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1 Preface

The purpose of this volume is to present some worked out examples from the theory of Functions in
Several Variables in the following topics:

1) Maximum and minimum of a function.

2) Integration in the plane and in the space.

3) Vector analysis.

As an experiment I shall here use the following generic diagram for solving problems:

A. For Awareness. What is the problem?
Try to formulate the problem in your own words, thereby identifying it.

D. For Decision. What are we going to do with it?
Are there any reasonable solution procedure available? If so, which one should be chosen?

I. For Implementation. Here we do all the necessary calculations for solving the task after the
choice of the previous D.
At high school one usually starts here, but the problems may now be so complex that we need the
previous analysis as well.

C. For Control. Whenever it is possible, one should check the solution.
Note, however, that this is not always possible, so in many cases we have to skip this point.

Notice that A, D, I can always be effectuated, no matter whether the problem is a mathematical
exercise, or construction of some building, or any other problem which should be solved. The model is
in this sense generic. It was first presented for me in Telecommunication for over 15 years ago, where
I added C, the control of the solution. I hope that these simple guidelines will help the students as
much as it has helped me. Notice also that if one during the I, Implementation, comes across a new
and unforeseen problem, then one may iterate this simple model.

The intension is not to write a textbook, but only instead to give some hints of how to solve problems
in this field. It therefore cannot replace any given textbook, but it may be used as a supplement to
such a book on Functions in Several Variables.

The chapters are only consisting of examples without any further mathematical theory, which one
must get from an ordinary textbook. On the other hand, it should be possible to copy the methods
given here in similar exercises.

In Appendix A the reader will find a collection of formulæ which otherwise tacitly are assumed to be
known from high school. It is highly recommended that the student learns these by heart during the
course, because they form the backbone of the elementary part of Calculus, which should be mastered,
before one may proceed to more advanced parts of Mathematics.

Preface

The text is a continuation of Studentensupport: Calculus 1, Real Functions in One Variable and of 
Studentensupport: Calculus 2a, Real Functions in Several Variables, Methods of Solution.

The text is based on my experiences in my teaching of students in this course. I realized that there was 
absolutely a need for a practical description of how to solve explicit problems.

Leif Mejlbro
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2 The range of a function in several variables

2.1 Maximum and minimum

Example 2.1

A Let A be a closed and bounded (i.e. compact) subset of the plane where the boundary ∂A is a closed
curve of the parametric representation

r(t) =
(
4t

1
3 (1 − t)

2
3 , 4t

2
3 (1 − t)

1
3

)
, t ∈ [0, 1].

Find the maximum and minimum in A for the C∞-function

f(x, y) = x3 + y3 − 3xy, (x, t) ∈ A.

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 1: The closed and bounded domain A.

D Standard procedure:

1) Sketch the domain A and apply the second main theorem for continuous functions, from which
we conclude the existence of a maximum and a minimum.

2) Identify the exceptional points in A◦, if any, and calculate the values f(x, y) in these points.

3) Set up the equations for the stationary points; find these – which quite often is a fairly difficult
task, because the system of equations is usually non-linear. Finally, compute the values f(x, y)
in all stationary points.

4) Examine the function on the boundary, i.e. restrict the function f(x, y) to the boundary and
repeat the investigation above to a set which is of lower dimension. Then find the maximum
and minimum on the boundary.

5) Collect all the candidates for a maximum and a minimum found previously in 2)–4). Then the
maximum S and the minimum M are found by a simple numerical comparison.

Remark 2.1 Note that by using this method there is no need to use the complicated (r, s, t)-
method, which only should be applied when we shall find local extrema in the plane. Here we are
dealing with global maxima and minima in a set A. ♦

The range of a function in several variables
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Remark 2.2 Sometimes it is alternatively easy to identify the level curves f(x, y) = c for the
function f . In such a case, sketch a convenient number of the level curves, from which it may be
easy to find the largest and the smallest constant c, for which the corresponding level curve has
points in common with the set A. Then these values of c are automatically the maximum S, resp.
the minimum M for f on A.

Notice, however, that this alternative method is demanding some experience before one can use
it as a standard method of solution. It was once used with success by a brilliant student at an
examination, summer 2000. ♦

I The level curves f(x, y) = x3 + y3 − 3xy = c do not look to promising, so we stick to the standard
procedure.

1) The domain A has already been sketched. Since A is closed and bounded, and f(x, y) is
continuous on A, it follows from the second main theorem for continuous functions that the
function f has a maximum and a minimum on the set A.

2) Since f is of class C∞ in A◦, there are no exceptional points.

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

The range of a function in several variables
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Figure 2: The stationary points are the intersections between the curves y = x2 and x = y2.

3) The stationary points satisfy the two equations

∂f

∂x
= 3x2 − 3y = 0, i.e. y = x2,

∂f

∂y
= 3y2 − 3x = 0, i.e. x = y2.

When we look at the graph we obtain the two solutions:

(0, 0) ∈ ∂A and (1, 1) ∈ A◦.

Alternatively one inserts y = x2 into the second equation

0 = y2 − x = x4 − x = x(x3 − 1) = x(x − 1)(x2 + x + 1).

Here x2 + x + 1 has only complex roots, hence the only real roots are x = 0 (with y = x2 = 0)
and x = 1 (with y = x2 = 1), corresponding to

(0, 0) ∈ ∂A and (1, 1) ∈ A◦.

Since (0, 0) is a boundary point, we see that (1, 1) ∈ A◦ is the only stationary point for f in A◦.

We transfer the value

f(1, 1) = 1 + 1 − 3 = −1.

to the collection of all values in 5) below.

4) The Boundary. When we apply the parametric representation

(x, y) = r(t), t ∈ [0, 1],

we get the restriction to the boundary

g(t) = f(r(t)) = f
(
4t

1
3 (1 − t)

2
3 , 4t

2
3 (1 − t)

1
3

)
=
{
64t(1 − t)2

}
+
{
64t2(1 − t)

}− 3 ·
{

4t
1
3 (1 − t)

2
3

}
·
{

4t
2
3 (1 − t)

1
3

}
= 64 t(1 − t)2 + 64 t2(1 − t) − 48 t(1 − t)
= 16 t(1 − t){4(1 − t) + 4t − 3} = 16 t(1 − t), t ∈ [0, 1].

The range of a function in several variables
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We have now reduced the problem to a problem known from high school

g′(t) = 12(2t − 1) = 0 for t =
1
2
,

corresponding to

g

(
1
2

)
= f
(
4 · 2− 1

3 · 2− 2
3 , 4 · 2− 2

3 · 2− 1
3

)
= f(2, 2) = 4.

At the end points of the interval, t = 0 and t = 1, we get

g(0) = g(1) = f(0, 0) = 0.

5) We collect all the candidates:

exceptional points: None, [from 2)]

Stationary point: f(1, 1) = −1, [from 3)]

Boundary points: f(0, 0) = 0 and f(2, 2) = 4, [from 4)].

By a numerical comparison we get

• The minimum is f(1, 1) = −1 (a stationary point),
• The maximum is f(2, 2) = 4 (a boundary point).

6) A typical addition: Since A is connected, and f is continuous, it also follows from the first main
theorem for continuous functions, that the range is an interval (i.e. connected), hence

f(A) = [M,S] = [−1, 4]. ♦

Example 2.2

A. Find maximum and minimum of the C∞-function

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3

in the set A given by x2 + y2 ≤ 4 = 22.

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 3: The domain A.
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1

2

Figure 4: The graph of f(x, y) over A. Notice that a consideration of the graph does not give any
hint.

D. Even if the rewriting of the function

f(x, y) = (x2 + y2)2 + 2x2y2 − 4(x3 + y3)

looks reasonably nice it is still not tempting to apply an analysis of the level curves f(x, y) = c, so
we shall again use the standard method as described in the previous example, to which we refer
for the description.

I. 1) The domain A has been sketched already. Since A is closed and bounded, and f(x, y) is contin-
uous on A, it follows from the second main theorem for continuous functions that f(x, y) has
a maximum and a minimum on A.

The range of a function in several variables
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While we are dealing with theoretical considerations we may aside mention that since A is
obviously connected, it follows from the first main theorem for continuous functions that the
range is connected, i.e. an interval, which necessarily is given by

f(A) = [M,S].

2) Since f(x, y) is of class C∞, there is no exceptional point.

3) The stationary points (if any) satisfies the system of equations

0 =
∂f

∂x
= 4x3 + 8xy2 − 12x2 = 4x(x2 + 2y2 − 3x),

0 =
∂f

∂y
= 8x2y + 4y3 − 12y2 = 4y(2x2 + y2 − 3y).

Note that it is extremely important to factorize the expressions as much as possible in order to
solve the system. In fact, when this is done, we can reduce the system to

∂f

∂x
= 0 : x = 0 or x2 + 2y2 − 3x = 0,

∂f

∂y
= 0 : y = 0 or 2x2 + y2 − 3y = 0.

These conditions are now paired in 2 · 2 = 4 ways which are handled one by one.

a) When x = 0 and y = 0, we get (0, 0) ∈ A◦, i.e. (0, 0) is a stationary point with the value of
the function

f(0, 0) = 0.

b) When x = 0 and 2x2 + y2 − 3y = 0, we get

0 + y2 − 3y = y(y − 3) = 0, hence y = 0 or y = 3.

Thus, we have two possibilities: (0, 0) ∈ A◦, which has already been found previously, and
(0, 3) /∈ A, so this point does not participate in the competition. We therefore do not get
further points in this case.

c) When y = 0 and x2 + 2y2 − 3x = 0, we get by an interchange of letters (x, y) → (y, x) that
the candidates are (0, 0) ∈ A◦ [found previously] and (3, 0) /∈ A. Hence we get no further
point in this case.

–1

0

1

2

3

–1 1 2 3
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Figure 5: The ellipses x2 + 2y2 − 3x = 0 and 2x2 + y2 − 3y = 0 and the line of symmetry y = x.

d) It still remains the last possibility

x2 + 2y2 − 3x = 0 and 2x2 + y2 − 3y = 0.

From the rewriting (cf. e.g. Linear Algebra)(
x − 3

2

)2

+ 2y2 =
(

3
2

)2

and 2x2 +
(

y − 3
2

)2

=
(

3
2

)2

it is seen that the stationary points are the intersections of the two ellipses. It follows from
the symmetry that the points must lie on the line y = x. By eliminating y we get

0 = x2 + 2y2 − 3x = 3x2 − 3x = 3x(x − 1).

Hence we get either x = 0, corresponding to (0, 0) ∈ A◦ [found previously] or x = 1
corresponding to (1, 1) ∈ A◦, which is a new candidate with the value

f(1, 1) = 1 + 4 + 1 − 4 − 4 = −2.

Summarizing we get the stationary points (0, 0) and (1, 1) with the corresponding values of the
function

f(0, 0) = 0 og f(1, 1) = −2.

4) The boundary. The simplest version is the following alternative to the standard procedure: A
parametric representation of the boundary curve is

(x, y) = r(ϕ) = (2 cosϕ, 2 sinϕ), ϕ ∈ [0, 2π], (evt. ϕ ∈ R),

where we note that

(1)
(

dx

dϕ
,
dy

dϕ

)
= r′(ϕ) = (−2 sin ϕ, 2 cos ϕ) = (−y, x).

If we put g(ϕ) = f(r(ϕ)), where

f(x, y) = x4 + 4x2y2 + y4 − 4x3 − 4y3,

then we get by the chain rule, that the maximum and the minimum on the boundary should
be searched among the points on the boundary

x2 + y2 = 4,

for which (apply (1)),

The range of a function in several variables
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–3

–2

–1

0

1

2

–3 –2 –1 1 2

Figure 6: The intersections of the circle and the lines x = 0, y = 0, y = x and x + y + 3 = 0.

0 = g′(ϕ) =
∂f

∂x
· dx

dϕ
+

∂f

∂y
· dy

dϕ

=
{
4x3+8xy2−12x2

} · (−y) +
{
8x2y+4y3−12y2

}
x

= 4x
{
x2 + 2y2 − 3x

}
(−y) + 4y

{
2x2 + y2 − 3y

}
x

= 4xy
{−x2 − 2y2 + 3x + 2x2 + y2 − 3y

}
= 4xy

{
x2 − y2 + 3(x − y)

}
= 4xy(x − y){3 + x + y}.

The range of a function in several variables
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Hence we shall find the intersections between the circle x2 + y2 = 4 = 22 and the lines

x = 0, y = 0, y = x and x + y + 3 = 0.

It follows immediately that these intersections are

(2, 0), (
√

2,
√

2), (0, 2), (−2, 0), (−
√

2,−
√

2), (0,−2).

We take a note of the values

f(2, 0) = f(0, 2) = 16 − 32 = −16,

f(−2, 0) = f(0,−2) = 16 + 32 = 48,

f(
√

2,
√

2) = 6 · 4 − 2 · 4 · 2√2 = 24 − 16
√

2,

f(−√
2,−√

2) = 24 + 16
√

2.

5) Summarizing we shall compare numerically

exceptional points: none,

stationary points: f(0, 0) = 0, f(1, 1) = −2,

boundary points: f(2, 0) = f(0, 2) = −16,

f(−2, 0) = f(0,−2) = 48,

f(
√

2,
√

2) = 24 − 16
√

2,

f(−√
2,−√

2) = 24 + 16
√

2.

Since 16
√

2 < 16 · 3
2

= 24, it follows that

the minimum is M = f(2, 0) = f(0, 2) = −16,

the maximum is S = f(−2, 0) = f(0,−2) = 48,

and that both the minimum and the maximum are lying on the boundary.

6) Finally, we get from 1) that due to the first main theorem for continuous functions the range
is the interval

f(A) = [M,S] = [−16, 48]. ♦

Example 2.3

A. Find maximum and minimum for the function

f(x, y) =
√

x2 + 16y2 − y4

in the set

A = {(x, y) | x2 + 36y2 ≤ 81}.

The range of a function in several variables
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D. In this case one might find the level curves f(x, y) = c, which by using that

a2 − b2 = (a + b)(a − b)

can be rewritten as

x2 =
(
y4 + c

)2 − 16y2 =
(
y4 + 4y + c

) (
y4 − 4y + c

)
.

This expression still looks too difficult to analyze, so we shall again stick to the standard procedure
as described in the first example.

–2

–1

0

1

2

y

–10 –8 –6 –4 –2 2 4 6 8 10

x

Figure 7: The closed and bounded domain A.

I. 1) Using some Linear Algebra, the set A is written as

(x

9

)2
+
(

y
3
2

)2

≤ 1,

which shows that at A is a closed ellipsoidal disc, cf. the figure.

Since the set A is closed and bounded, and even connected, and f(x, y) is continuous on A, it
follows from the second main theorem for continuous functions that f has a minimum M and a
maximum S on A. It follows furthermore from the first main theorem for continuous functions
that the range is connected, i.e. an interval, which necessarily is

f(A) = [M,S].

2) Since the square root is not differentiable at 0, it follows that (0, 0) is an exceptional point! We
make a note for 5) of the value

f(0, 0) = 0.

The range of a function in several variables
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3) The stationary points in A◦ \ {(0, 0)}, if any, must satisfy the system of equations

∂f

∂x
=

x√
x2 + 16y2

= 0 and
∂f

∂y
=

16y√
x2 + 16y2

− 4y3 = 0.

The first equation is only fulfilled for x = 0. Thus any stationary point must lie on the y-axis.

Since (0, 0) is an exceptional point, we must have y �= 0 for any stationary point. When we
put x = 0 into the second equation, we get (NB:

√
y2 = |y|)

0 =
16y√
16y2

− 4y3 = 4y
{

1
|y| − y2

}
= 4

y

|y|
{
1 − |y|3} .

Since y �= 0, we must have |y| = 1, i.e. y = ±1. Hence the stationary points are (0, 1) and
(0,−1). We make a note for 5) of the value

f(0, 1) = f(0,−1) =
√

16 − 1 = 3.

The range of a function in several variables
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4) The boundary. On the boundary we get x2 + 36y2 = 81, i.e.

x2 = 81 − 36y2.

Since f(x, y) only contains x in the form x2, we can use this equation to eliminate x2 when we
write down the restriction,

f(y) =
√

x2 + 16y2 − y4 =
√

81 − 36y2 + 16y2 − y4

=
√

81 − 20y2 − y4 y ∈
[
−3

2
,
3
2

]
.

It follows immediately that g(y) is decreasing in the new variable t = y2 ∈
[
0,

9
4

]
, hence the

maximum on the boundary is

g(0) = f(−9, 0) = f(9, 0) = 9,

and the minimum on the boundary is

g

(
±3

2

)
= f

(
0,

3
2

)
= f

(
0,−3

2

)
=

√
16 · 9

4
− 81

16
= 6 − 81

16
=

15
16

.

5) A numerical comparison of

exceptional point: f(0, 0) = 0,

stationary points: f(0, 1) = f(0,−1) = 3,

boundary points: f

(
0,

3
2

)
= f

(
0,−3

2

)
=

15
16

,

f(−9, 0) = f(9, 0) = 9,

gives

maximum: f(−9, 0) = f(9, 0) = 9, (boundary points),

minimum: f(0, 0) = 0, (exceptional point).

6) According to 1) the range is given by

f(A) = [M,S] = [0, 9],

where we have used the first main theorem for continuous functions. ♦

The range of a function in several variables
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Example 2.4

A. Consider the function

f(x, y) = x + 3y − 2 ln(1 + 4xy)

defined on the triangle A with its vertices (1, 0), (4, 0) and (1, 1). Find the maximum and minimum
of f(x, y) on A.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

1 2 3 4

x

Figure 8: The closed and bounded domain A.

D. Here it is totally out of question to find the level curves, so we apply the standard procedure as
described in Example 2.1.

I. 1) We first sketch A. Since f(x, y) is continuous on the closed and bounded triangle A (note in
particular that 1 + 4xy > 0), it follows from the second main theorem for continuous functions
that f(x, y) has both a maximum S and a minimum M on A. Since A is also connected, it
follows from the first main theorem for continuous functions that the range is connected, i.e.
an interval, and we have necessarily

f(A) = [M,S].

2) Since f everywhere in A◦ is of class C∞, it follows that f(x, y) has no exceptional point.

3) The stationary points, if any, must satisfy the equations

∂f

∂x
= 1 − 8y

1 + 4xy
= 0 and

∂f

∂y
= 3 − 8x

1 + 4xy
= 0,

i.e.

8y = 1 + 4xy and 8x = 3(1 + 4xy).

When 1 + 4xy > 0 is eliminated we get 8x = 3 · 8y, from which x = 3y, which is a condition
that the stationary points necessarily must satisfy.

By insertion of x = 3y we get

8y = 1 + 4xy = 1 + 12y2,

The range of a function in several variables
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which is rewritten as

0 = 12y2 − 8y + 1 = 12
(

y − 1
6

)(
y − 1

2

)
.

From this we either get y =
1
6
, corresponding to x = 3 · 1

6
=

1
2
, i.e.

(
1
2
,
1
6

)
/∈ A, or y =

1
2
,

corresponding to(
3
2
,
1
2

)
∈ A◦.

We only find one stationary point
(

3
2
,
1
2

)
. We make a note of the value for 5) below,

f

(
3
2
,
1
2

)
=

3
2

+
3
2
− 2 ln

(
1 + 4 · 3

2
· 12
)

= 3 − 2 ln 4 = 3 − 4 ln 2.

4) The investigation of the boundary is divided into three cases:

a) On the line x = 1, y ∈ [0, 1], we get the restriction

g1(y) = 1 + 3y − 2 ln(1 + 4y),

where

g′1(y) = 3 − 8
1 + 4y

= 0 for 1 + 4y =
8
3
, i.e. y =

5
12

∈ [0, 1],
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corresponding to

f

(
1,

5
12

)
= g1

(
5
12

)
= 1 +

5
4
− 2 ln

(
1 +

5
3

)
=

9
4
− 2 ln

(
8
3

)
.

NB: We must not forget the endpoints of the line:
f(1, 0) = g1(0) = 1 + 0 − 2 ln(1 + 4 · 0) = 1,
f(1, 1) = g1(1) = 1 + 3 − 2 ln(1 + 4 · 1) = 4 − 2 ln 5.

b) On the line y = 0, x ∈ [1, 4], we get the restriction

g2(x) = x − 2 ln(1 + 4 · x · 0) = x,

which obviously is increasing. Therefore we shall only make a note on the values at the
endpoints,

f(1, 0) = 1 and f(4, 0) = 4.

c) On the line x + 3y = 4, i.e. x = 4 − 3y, y ∈ [0, 1], the restriction is given by

g3(y) = 4 − 2 ln(1 + 4(4 − 3y)y) = 4 − 2 ln(1 + 16y − 12y2).

Here we get

g′3(y) = − 2
1+16y−12y2

(16−24y) = 0 for y =
2
3
∈ [0, 1],

corresponding to x = 4 − 3 · 2
3

= 2. The interesting point is
(

2,
2
3

)
∈ ∂A with the value

f

(
2,

2
3

)
= g3

(
2
3

)
= 4 − 2 ln

(
1 + 16 · 2

3
− 12 · 4

9

)

= 4 − 2 ln
(

1 +
32
3

− 16
3

)
= 4 − 2 ln

19
3

.

We have already treated the two endpoints earlier.

5) Finally we shall compare numerically

exceptional points: none,

stationary point: f

(
3
2
,
1
2

)
= 3 − 4 ln 2 ≈ 0, 23,

boundary a): f

(
1,

5
12

)
=

9
4
− 2 ln

(
8
3

)
≈ 0, 29,

f(1, 1) = 4 − 2 ln 5 ≈ 0, 79,

f(1, 0) = 1,

boundary b): f(4, 0) = 4,

boundary c): f

(
2,

2
3

)
= 4 − 2 ln

19
3

≈ 0, 31.
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By a comparison we see that

the maximum is S = f(0, 4) = 4, (boundary point),

the minimum is M = f

(
3
2
,
1
2

)
= 3 − 4 ln 2, (stationary point).

Remark 2.3 Note that the comparison is made approximatively, while the result is given in
an exact form. ♦

6) According to 1) we finally get by the first main theorem for continuous functions that the range
is

f(A) = [M,S] = [3 − 4 ln 2, 4]. ♦

Example 2.5 A nasty example which usually is not given in any textbook, is given by the following.
It illustrates that the usual division of cases in the textbooks is not exhaustive.

Let A = K(0; 1) be the open unit disc, and consider the function

f(x, y) =
(
x2 + y2

)
cos
(

1
1 − x2 − y2

)
, x2 + y2 < 1.

Then f(x, y) is bounded on A,

|f(x, y)| ≤ x2 + y2 < 1 for (x, y) ∈ A,

and we see that f(x, y) has no continuous extension to any point on the boundary.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 9: The set A is the open unit disc.
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Then note that

1) f(x, y) = 1 − 1
2pπ

for x2 + y2 = 1 − 1
2pπ

, p ∈ N,

2) f(x, y) = −1 +
1

(2p + 1)π
for x2 + y2 = 1 − 1

(2p + 1)π
, p ∈ N,

from which we conclude that f has neither a maximum nor a minimum in the open set A.

However, since f(x, y) is continuous on the connected set A, it follows from the first main theorem
for continuous functions that f(A) also is connected, i.e. an interval.

According to 1) the function f(x, y) attains values smaller than 1, though we can get as close to 1 as
we wish.

According to 2) the function f(x, y) attains values bigger than −1, though we can get as close to −1
as we wish.

Hence we conclude that the range is given by

f(A) = ] − 1, 1[. ♦

The range of a function in several variables
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Example 2.6

Let A be the open triangle

A = {(x, y) | 0 < x < 1, −x < y < 4x},

and let the function f(x, y) on A be given by

f(x, y) = 2xy + 3 ln(1 − x), (x, y) ∈ A.

Find the range f(A).

A.

–1

0

1

2

3

4

y

0.2 0.6 11.2

x

Figure 10: The open and bounded domain A.

D. Here it is possible to find the level curves. In fact, since x > 0 in A, we get that

f(x, y) = 2xy + 3 ln(1 − x) = c, (x, y) ∈ A,

is equivalent to

y = ϕc(x) =
c

2x
− 3

2
· ln(1 − x)

x
.

Although the expression looks very complicated, it is actually possible to analyze these level
curves. The reader is referred to section I 2 which, however, may be considered a bit advanced
for a common use.

We therefore start with the standard procedure in section I 1 with some necessary modifications.
First we exploit the theoretical main theorems as much as possible. Then we extend f to the parts
of the boundary where it is possible, and we discuss what happens at the boundary points where
such a continuous extension of f is not possible.

We see that both methods have a common theoretical start, which we here call section I.
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I. Since f(x, y) is continuous on the connected set A, it follows from the first main theorem for
continuous functions that the range f(A) is connected, i.e. an interval.

Since A is bounded, though not closed, we cannot apply the second main theorem for continuous
functions. We shall first find out whether f(x, y) has a continuous extension to (parts of) the
boundary of A.

It follows immediately that f(x, y) can be continuously extended to the lines

y = 4x and y = −x, x ∈ [0, 1[,

with the same formal expression of the function, i.e. the extension is given by

f(x, y) = 2xy + 3 ln(1 − x) for 0 ≤ x < 1, −x ≤ y ≤ 4x.

On the other hand, we cannot extend to the vertical line x = 1, because

lim
x→1−

f(x, y) = 2y + 3 lim
x→1−

ln(1 − x) = −∞.

However, we see that the lower bound is −∞, so f(A) must be a semi-infinite, i.e. either ]−∞, a[
or ]−∞, a], because the theorems do not assure that the upper bound a actually belongs to f(A).
This question can only be decided by an explicit analysis.

It follows that we shall only search the maximum in

B = {(x, y) | 0 ≤ x < 1, −x ≤ y ≤ 4x}.
Since we also have f(x, y) → −∞ for x → 1−, in B, there exists an ε ∈ ]0, 1[, such that

f(x, y) < S for (x, y) ∈ B and 1 − ε ≤ x < 1.

The maximum S is therefore attained in the closed and bounded and truncated domain

Bε = {(x, y) | 0 ≤ x ≤ 1 − ε, −x ≤ y ≤ 4x},
where we of course assume that S exists and S < +∞.

This follows, however, from the second main theorem for continuous functions, applied on Bε.

Since we only want to find the maximum, the standard procedure is hereafter the same as for closed
and bounded domains. The only modification is that we shall not go through an investigation of
the boundary on the line x = 1 − ε.

I 1. Standard procedure.

1) We have already sketched a figure and quoted and applied the second main theorem.
2) Since f(x, y) belongs to the class C∞ in A, there is no exceptional point.
3) The stationary points in A, if any, must satisfy the equations

∂f

∂x
= 2y − 3

1 − x
= 0 amd

∂f

∂y
= 2x = 0.

It follows from the latter equation that x = 0; but since x > 0 in A, we see that we have no
stationary point in A for the function f .
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4) Modified investigation of the boundary.

a) For y = 4x we get the restriction

g1(x) = 8x2 + 3 ln(1 − x), for x ∈ [0, 1[,

where

g′1(x) = 16x − 3
1 − x

.

Hence, g′1(x) = 0 for

0 = 16x2 − 16x + 3 = (4x − 3)(4x − 1),

i.e. for x =
1
4

or x =
3
4
.

By applying high school calculus it is seen that the maximum is either attained for x = 0,

corresponding to g1(0) = f(0, 0) =, or for x =
3
4
, corresponding to

g1

(
3
4

)
= f

(
3
4
, 3
)

=
8 · 9
16

+ 3 ln
(

1 − 3
4

)
=

9
2
− 6 ln 2

≥ 4, 5 − 6 · 0, 7 = 0, 3 > 0.

The range of a function in several variables
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b) For y = −x we get the restriction

g2(x) = −2x2 + 3 ln(1 − x), for x ∈ [0, 1[,

where

g′2(x) = −4x − 3
1 − x

< 0.

Hence, g2(x) is decreasing. The maximum on this line is therefore g2(0, 0) = f(0, 0) = 0.
c) Numerical comparison. When we compare the values of the candidates above it follows that

the maximum in B is

f

(
3
4
, 3
)

=
9
2
− 6 ln 2 > 0.

This value is only attained at the boundary point
(

3
4
, 3
)

, so

• f(B) =
]
−∞,

9
2
− 6 ln 2

]
,

and

• f(A) =
]
−∞,

9
2
− 6 ln 2

[
,

because A is obtained by removing all boundary points from B.

–1

0

1

2

3

4

y

0.2 0.6 11.2

x

Figure 11: The level curves for c =
1
2

(below) and c = 1 (above).

I 2. The method of level curves. The level curve

y = ϕc(x) =
c

2x
− 3

2
· ln(1 − x)

x

is defined in the strip 0 < x < 1 as the graph of a function. If c �= 0, then both x = 0 and x = 1
are asymptotes. It follows that

lim
x→1−

ϕc(x) = +∞ for all c ∈ R,
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and that

lim
x→0+

ϕc(x) = +∞ for c > 0,

and

lim
x→0+

ϕc(x) = −∞ for c < 0.

The curves are characterized by f(x, y) being constant c along y = ϕc(x). We have sketched two
level curves on the figure (where c > 0), from which it is seen that the curved “move upwards”,
when c increases.

Hence we are looking for the biggest c, for which y = ϕc(x) just is contacting the boundary of B
without intersecting B. This is not possible for c < 0, and at the same time we get the line y = −x
excluded. Thus the maximum can only lie on the line y = 4x. Since y = ϕc(x) only touches this
line, the following two conditions must be fulfilled:

1) The curves must go through the same point, i.e. y = 4x = ϕc(x), or

4x = − 1
2x

{−c + 3 ln(1 − x)},

from which

−c + 3 ln(1 − x) = −8x2.

2) The curves must have the same slope at this point, i.e.

4 = ϕ′
c(x) =

1
2x2

{
−c + 3 ln(1 − x) +

3x
1 − x

}
.

The ugly terms −c + 3 ln(1 − x) in 2) can be eliminated by applying 1), hence

8x2 = −8x2 +
3x

1 − x
,

which is rewritten as

0 = 16x2(1 − x) − 3x = x{16x − 16x2 − 3} = −x(4x − 1)(4x − 3).

From this we get the solutions x = 0, x =
1
4

and x =
3
4
, and since y = 4x, we finally get the

candidates

(0, 0),
(

1
4
, 1
)

,

(
3
4
, 3
)

,

with the corresponding function values for the extended function,

f(0, 0) = 0, f

(
1
4
, 1
)

=
1
2
− 3 ln

4
3
, f

(
3
4
, 3
)

=
9
2
− 6 ln 2.
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By a numerical comparison we get that the maximum is attained at the point
(

3
4
, 3
)

. Hence we

conclude that

f(B) = −
]
−∞,

9
2
− 6 ln 2

]
.

Finally, when we remove the boundary points from B, we obtains as previously that

f(A) =
]
−∞,

9
2
− 6 ln 2

[
. ♦

2.2 Extremum

Example 2.7 In this example we produce some functions in R
2, which all have (0, 0) as a stationary

point and value zero.

We supply the investigation with sketches of the graphs and discussions of the sign of the function in
the neighbourhood whenever this is necessary. Concerning the graphs the reader is also referred to
Linear Algebra.
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Figure 12: The graph of z = x2 + y2.

1) z = f1(x, y) = x2 + y2.

The graph of f1 is a paraboloid of revolution.

Since

f1(x, y) > 0 = f(0, 0) for (x, y) �= (0, 0),

the function f1 has a true minimum at (0, 0). It is easily seen that this is also the global minimum
of the function.

2) z = f2(x, y) = x2 − 4xy + 4y2 = (x − 2y)2.

The graph of f2 is a parabolic cylinder. It follows immediately that

f2(x, y) ≥ 0 = f(0, 0);
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Figure 13: The graph of z = (x − 2y)2.
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but since

f
(
x,

x

2

)
= 0 = f(0, 0) for alle x,

we see that (0, 0) is a weak local minimum. However, we also have in this case that 0 is a global
minimum.
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1
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–1

–0.5
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1

Figure 14: The graph of z = x3 + y3 sketched in MAPLE does not give the best picture.

3) z = f3(x, y) = x3 + y3 = (x + y)(x2 − xy + y2).

Since x3 + y3 is of odd degree 3, we take e.g. the restriction of f3 to the x-axis,

f3(x, 0) = x3 (is both > and < 0),

in a neighbourhood of x = 0, so f3 has no extremum at (0, 0).

This can also be seen by analyzing the sign of the function. In fact, x2 − xy + y2 ≥ 0 for all (x, y),
thus x3 + y3 is everywhere of the same sign as x + y.
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0.5
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–1 –0.5 0.5 1

Figure 15: The restriction to the x-axis gives a better picture.
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Figure 16: The graph of z = x2 − y2.

4) z = f4(x, y) = x2 − y2 = (x + y)(x − y).

The graph is a hyperbolic paraboloid. There is no extremum at (0, 0).

An analysis of the sign shows that f4(x, y) is 0 on the lines x + y = 0 and x − y = 0, and that
f4(x, y) attains both positive and negative values in any neighbourhood of (0, 0).

It is finally also possible to consider the restrictions

x − axis: f4(x, 0) = x2 > 0 for x �= 0,
y − axis: f5(0, y) = −y2 < 0 for y �= 0,

from which we arrive to the same conclusion. ♦
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Example 2.8

A. Examine whether the function

f(x, y, z) = exp
(
xy + z2

)
has local extrema.

D. Here we shall not use the standard procedure but instead we suggest an alternative method. In
fact, since exp is strictly increasing, the functions

ϕ(x, y, z) = xy + z2 and f(x, y, z) = exp(ϕ(x, y, z))

must have the same stationary points and extrema.

We therefore examine the simpler function ϕ(x, y, z).

I. The equations for the stationary points for ϕ(x, y, z) are

∂ϕ

∂x
= y = 0,

∂ϕ

∂y
= x = 0,

∂ϕ

∂z
= 2z.

Hence it follows immediately that (0, 0, 0) is the only stationary point.

2) For the other candidates the (r, s, t)-method is easier, because it is the essence of the deter-
mination of the approximative polynomial of at most degree two. One often forgets in the
applications that this is the general idea behind the (r, s, t)-method. Note that we in 1) had to
expand to the third degree, which is the reason why the (r, s, t)-method fails for (0, 0).

There is, however, also an alternative method for the other points. This will here be illustrated
on the point (1, 1).

a) First we reset , the problem, i.e. put (x, y) = (1 + h, 1 + k), so (h, k) = (0, 0) corresponds to
the point (x, y) = (1, 1) under examination.

b) Insert this in the expression for f(x, y) and write dots for terms of degree > 2:
f(x, y) = (1 + h)4 + 4(1 + h)2(1 + k)2 + (1 + k)4 − 4(1 + h)3 − 4(1 + k)3

= 1 + 4h + 6h2 + · · · + 4(1 + 2h + h2)(1 + 2k + k2)
+1 + 4k + 6k2 + · · · − 4(1 + 3h + 3h2 + · · · )
−4(1 + 3k + 3k2 + · · · )

= (1 + 4h + 6h2) + 4
{
1 + 2h + h2 + 2k + 4hk + k2 + · · ·}

+(1 + 4k + 6k2) − 4(1 + 3h + 3h2) − 4(1 + 3k + 3k2) + · · ·
= −2 − 2h2 + 16hk − 2k2 + · · · ,

i.e.

P2(h, k) = −2 − 2(h2 − 8hk + k2) = −2 − 2
{
(h − 4k)2 − 15k2

}
.

Since P2(h, k) + 2 attains both negative values (for k = 0 and h �= 0) and positive values
(for h = 4k) in any neighbourhood of (h, k) = (0, 0), we conclude that (x, y) = (1, 1) is not
an extremum. ♦
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Example 2.10

A. Examine whether the function

f(x, y) = 1 − 4x2 − 4y2 + x2y2, (x, y) ∈ R
2.

has any extremum. Find the range f(R2).

D. When we apply the standard procedure we are guided through the usual examination of the
exceptional points (there are none) and of the stationary points. It is, however, here possible to
make a shortcut by noticing that f(x, y) only is a function in u = x2 and v = y2, i.e.

f(x, y)1 − 4x2 − 4y2 + x2y2 = g(u, v) = 1 − 4u − 4v + uv, u, v ≥ 0.

I. The stationary points for f(x, y), if any, must fulfil the equations

∂f

∂x
= −2x(4 − y2) = 0 and

∂f

∂y
= −2y(4 − x2) = 0.

This system is split into

x = 0 or y = 2 or y = −2,

and

y = 0 or x = 2 or x = −2.

Formally we get 3 · 3 possibilities, but four of them are not possible (e.g. x cannot at the same
time be 0 and 2 or −2). We therefore get five stationary points,

(0, 0), (2, 2), (−2,−2), (−2, 2), (2,−2).
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Figure 17: The graph of z = 1 − 4x2 − 4y2.
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1) In (0, 0) we get

f(x, y) ≈ P2(x, y) = 1 − 4x2 − 4y2.

The graph of z = P2(x, y) is an elliptic paraboloid of revolution. Obviously we have a proper
local maximum at (0, 0).

2) We take a shortcut by considering

g(u, v) = 1 − 4u − 4v + uv, u = x2, v = y2,

instead. First, all four stationary points for f are seen to correspond to the only point (u, v) =
(4, 4). It is therefore sufficient to examine g(u, v) in the neighbourhood of (4, 4).

The approximating polynomial for g(u, v) expanded from (4, 4) of at most degree 2 is found by
using:

g(u, v) = 1 − 4u − 4v + uv, g(4, 4) = −15,

∂g

∂u
= −4 + v, g′u(4, 4) = 0,

∂g

∂v
= −4 + u, g′v(4, 4) = 0,

∂2g

∂u
∂v = 1,

∂2g

∂u2
=

∂2g

∂v2
= 0, ,

The range of a function in several variables
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Figure 18: The graph of f(x, y) = 1 − 4x2 − 4y2 + x2 + y2.

hence

P3(u, v) = −15 +
1
2
· (u − 4)(v − 4) = −15 + (u − 4)(v − 4).

It follows that P2(u, v) in the neighbourhood of (4, 4) attains values which are both > −15 and
< −15. Thus g(u, v) does not have an extremum at (4, 4). This implies that f(x, y) does not
have an extremum at (±2,±2) (all four possible combinations of the sign).

3) The function f(x, y) has only one local maximum,

f(0, 0) = 1.

However, this value is not the global maximum. In fact, by rewriting

f(x, y) = 1 − 4x2 − 4y2 + x2y2 = (x2 − 4)(y2 − 4) − 15,

we see that the restriction to the line y = x gives

f(x, x) =
(
x2 − 4

)2 − 15 → +∞ for x → ±∞.

4) Note also that

f(x, 0) = 1 − 4x2 → −∞ for x → ±∞.

Thus, since f is continuous on the connected set R
2, it follows from the first main theorem for

continuous functions that the range is

f(R2) = R. ♦

The range of a function in several variables
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3 The plane integral

3.1 Rectangular coordinates

Example 3.1

A. Calculate
∫

B
xy dS, where B is given on the figure.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 19: The domain B is the upper triangle.

D. We have two possibilities for the reduction:

D1. We first integrate horizontally.

D2. We first integrate vertically.

We shall treat both possibilities so we can compare the calculations in the two cases.
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Figure 20: The domain B with the vertical integration line from y = 1 − 1
2 x to y = 1.

D 1. We first integrate vertically.
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I 1. In this case we write the domain in the form

B = {(x, y) ∈ R
2 | 0 ≤ x ≤ 2, 1 − 1

2
x ≤ y ≤ 1}.

Notice that the outer variable x must always lie between two constants, 0 ≤ x ≤ 2. Then we use
the figure for any fixed x to find the integration interval for the inner variable of integration y,

i.e. in this particular case 1 − 1
2

x ≤ y ≤ 1.

Then write down the double integral:

(2)
∫

B

xy dS =
∫ 2

0

{∫ 1

1− 1
2 x

xy dy

}
dx =

∫ 2

0

x

{∫ 1

1− 1
2 x

y dy

}
dx.

Calculate the inner integral,

∫ 1

1− 1
2 x

y dy =
[
1
2

y2

]1
1− 1

2 x

=
1
2

{
1 −
(

1 − 1
2

x

)2
}

=
1
2

{
1 − 1

4
x2

}
=

1
2

x − 1
8

x2.

The plane integral
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By insertion in (2), we get

∫
B

xy dS =
∫ 2

0

x

{
1
2

x − 1
8

x2

}
dx =

∫ 2

0

{
1
2

x2 − 1
8

x3

}
dx

=
[
1
6

x3 − 1
32

x4

]2
0

=
8
6
− 1

2
=

5
6
.
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Figure 21: The domain B with the horizontal line of integration from x = 2 − 2y to x = 2.

D 2. Here we first integrate horizontally.

I 2. The domain is written

B = {(x, y) ∈ R
2 | 0 ≤ y ≤ 1, 2 − 2y ≤ x ≤ 2},

because y ∈ [0, 1] is now the outer variable of integration (lying between two constants), and where
2 − 2y ≤ x ≤ 2 for the inner variable of integration x for any fixed y.

The double integral becomes here

(3)
∫

B

xy dS =
∫ 1

0

{∫ 2

2−2y

xy dx

}
dy =

∫ 1

0

{∫ 2

2−2y

x dx

}
dy.

Let us first calculate the inner integral,

∫ 2

2(1−y)

x dx =
[
1
2

x2

]2
2(1−y)

=
1
2
· 22
{
12 − (1 − y)2

}
= 2(2y − y2)

= 4y − 2y2.

When this result is put into (3), we get by another calculation

∫
B

xy dS =
∫ 1

0

y(4y − 2y2) dy =
∫ 1

0

(4y2 − 2y3) dy

=
[
4
3

y3 − 1
2

y4

]1
0

=
5
6
. ♦

The plane integral
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Example 3.2

A. Calculate
∫

B
x exp

(
y3
)

dS, where B is given on the figure for a = 1.
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Figure 22: The domain B for a = 1.

D. We shall again examine the two possibilities of the order of integrations.
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Figure 23: The domain B for a = 1 with a vertical line of integration from y = x to y = 1.

D 1. Let us first try to integrate vertically for fixed x, just to see what happens.

I 1. Here the domain is written (note the order of x and y):

B = {(x, y) ∈ R
2 | 0 ≤ x ≤ a, x ≤ y ≤ a}.

Then we can write down the double integral:∫
B

x exp
(
y3
)

dS =
∫ a

0

{∫ a

x

x exp
(
y3
)

dy

}
dx =

∫ a

0

x

{∫ a

x

exp
(
y3
)

dy

}
dx.

The inner integral,∫ a

x

exp
(
y3
)

dy,

The plane integral
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does not just look impossible to calculate; it is impossible to calculate with our arsenal of func-
tions! Therefore we give up this variant. Instead we examine, if we shall be more successful by
interchanging the order of integration.
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Figure 24: The domain B for a = 1 with a horizontal line of integration from x = 0 to x = y where y
is kept fixed.

D 2. The domain is here written (note again the order of x and y):

B = {(x, y) ∈ R
2 | 0 ≤ y ≤ a, 0 ≤ x ≤ y}.

The plane integral
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Then we turn to the double integral,

(4)
∫

B

x exp
(
y3
)

dS =
∫ a

0

{∫ y

0

x exp
(
y3
)

dx

}
dy =

∫ a

0

exp
(
y3
){∫ y

0

x dx

}
dy.

The inner integral is calculated in the following way:∫ y

0

x dx =
[
1
2

x2

]y
0

=
1
2

y2.

By insertion in (4) followed by the substitution t = y3 and dt = 3y2 dy, where y2 dy already can
be found in the integrand, we get

∫
B

x exp
(
y3
)

dS =
∫ a

0

exp
(
y3
) · 1

2
y2 dy =

∫ a3

0

exp(t) · 1
2
· 1
3

dt

=
1
6
[
et
]a3

0
=

1
6
{
exp
(
a3
)− 1

}
.

Remark 3.1 In this case one of the two variants cannot be calculated, while the second one is
easy to perform. ♦

Example 3.3

A. Find the value of

E = Lz

∫
B

y

(x2 + y2 + z2)2
dS, where B = [0, a] × [0, b] and z > 0.

D. Here we can expect a quite a few difficulties, no matter which version we are choosing. In fact,
the integrand is suited for the polar coordinates, while the domain B in the (x, y)-plane is best
described in rectangular coordinates. By experience, such a mixture of polar and rectangular
coordinates will always give computational problems.

Then we notice that if we start by first integrating after x, then we shall immediately run into
troubles with this first integral∫

dx

(x2 + y2 + z2)2
.

It is possible to go through with the calculations, but they are far from elementary. On the other

hand, if we first integrate with respect to y, we shall benefit from the fact that y dy =
1
2

d
(
y2
)
,

where y2 already can be found in the integrand. For that reason we choose first to integrate with
respect to y.

The plane integral
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I. The double integral is here

(5) E = Lz

∫
B

y

(x2 + y2 + z2)2
dS = Lz

∫ a

0

{∫ b

0

y

(x2 + y2 + z2)2
dy

}
dx.

By the calculations of the inner integral we put for convenience c = x2 + z2 = equal a constant,
and we apply the substitution t = y2 where dt = 2y dy, and where y dy already is a factor in the

integrand, i.e. y dy =
1
2

dt. Thus,

∫ b

0

y

(x2 + y2 + z2)2
dy =

∫ b

0

1
y2 + c)2

y dy =
1
2

∫ b2

0

dt

(t + c)2
=

1
2

[
− 1

t + c

]b2
t=0

=
1
2

(
1
c
− 1

b2 + c

)
=

1
2

(
1

x2 + z2
− 1

x2 + b2 + z2

)
.

The result of this calculation is then inserted into (5), by which

(6) E =
Lz

2

∫ a

0

(
1

x2 + z2
− 1

x2 + b2 + z2

)
dx.

Notice here that it is not a good idea to put everything in the same fraction with a common
denominator, so we keep the form above.

A new calculation shows that if k2 > 0, then we get by the change of variable t =
x

k
that

∫
dx

x2 + k2
=

1
k

∫
1

1 +
(x

k

)2 1
k

dx =
1
k

∫
dt

1 + t2

=
1
k

Arctan t =
1
k

Arctan
(x

k

)
.

The trick in this type of calculation is by division to get the constant 1 in the denominator plus
some square.

When this calculation is applied with

k1 = z and k2 =
√

b2 + z2,

we get by insertion into (6) that

E =
Lz

2

[
1
k1

Arctan
(

x

k1

)
− 1

k2
Arctan

(
x

k2

)]a
0

=
Lz

2

{
1
z

Arctan
(a

z

)
− 1√

b2 + z2
Arctan

(
a√

b2 + z2

)}

=
L

2

{
Arctan

(a

z

)
− z√

b2 + z2
Arctan

(
a√

b2 + z2

)}
. ♦
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3.2 Polar coordinates

Example 3.4

A. Calculate

I =
∫

b

(x2 + y2) dS,

where B is described in polar coordinates by

A =
{

(�, ϕ)
∣∣∣ a ≤ � ≤ 2a,

�

2a
≤ ϕ ≤ ϕ

a

}
.

Note that B has a “weird” form in (x, y)-plane, while the parameter domain A in the (�, ϕ)-plane
is “straightened out”, so one can apply the rectangular version in the (�.ϕ)-plane. The price for
this is that one must add the weight function � to the integrand.

The plane integral
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Figure 25: The domain B in the (x, y)-plane.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 26: The parameter domain A in the (�, ϕ)-plane.

D. Apply the reduction formula in the second version, i.e. where the ϕ-integral is the inner integral.
This means that we first integrate vertically in the parameter domain.

I. By the reduction formula in its second version we get with the weight function �∫
B

(x2 + y2) dS =
∫ 2a

a

{∫ �
a

�
2a

�2 dϕ

}
� d� =

∫ 2a

a

�3

{∫ �
a

�
2a

dϕ

}
d�.

First calculate the inner integral,∫ �
a

�
2a

dϕ =
�

a
− �

2a
=

�

2a
,

which is seen to be the length of the ϕ-interval.

Then by insertion,∫
B

(x2 + y2) dS =
∫ 2a

a

�3 · �

2a
d� =

1
2a

∫ 2a

a

�4 d� =
1
2a

[
1
5

�5

]2a

1

=
1

10a
{
(2a)5 − a5

}
=

1
10a
{
32 a5 − a5

}
=

31
10

a4. ♦

The plane integral
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Example 3.5

A. Calculate

I =
∫

B

(x + y) dS,

where B is described in polar coordinate (for a > 0) by

A =
{

(�, ϕ)
∣∣∣ −π

2
≤ ϕ ≤ π

4
, 0 ≤ � ≤ a

}
,

i.e. A is a rectangle in the (�, ϕ)-plane.

D. Here we can apply both reduction formulæ, so we give two solutions.

D 1. Apply the first reduction formula; do not forget the weight function �.

I 1. From x = � cos ϕ and y = � sinϕ, we get in the first version, where we start by integrating
horizontally after �, that

I =
∫

B

(x + y) dS =
∫ π

4

−π
2

{∫ a

0

(� cos ϕ + � sin ϕ) � d�

}
dϕ.

Then calculate the inner integral,∫ a

0

(� cos ϕ + � sin ϕ) � d� = (cos ϕ + sinϕ)
∫ a

0

�2 d� =
a3

3
(cos ϕ + sinϕ).

By insertion of this result we finally get

I =
∫ π

4

−π
2

a3

3
(cos ϕ + sinϕ) dϕ =

a3

3
[sinϕ − cos ϕ]

π
4
−π

2
=

a3

3
.

–1

–0.5

0.5

1

y

–0.2 0.2 0.4 0.6 0.8 1 1.2
x

Figure 27: The domain B for a = 1 in the (x, y)-plane.
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Figure 28: The parametric domain A for a = 1 in the (�, ϕ)-plane.

D 2. Apply the second reduction formula. Again, do not forget the weight function �.

I 2. In the second version we just interchange the order of integration. Since the bounds are constants,
and the variables can be separated in the integrand, we can split the integral into a product of two
integrals. Then

I =
∫ a

0

{∫ π
4

−π
2

(� cos ϕ + � sinϕ) dϕ

}
� d�

=
∫ a

0

�2 d� ·
∫ π

4

−π
2

(cos ϕ + sinϕ) dϕ =
a3

3
· [sinϕ − cos ϕ]

π
4
−π

2
=

a3

3
. ♦

The plane integral
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Example 3.6

A. Calculate I =
∫

B
x dS, where B = K

((a

2
, 0
)

;
a

2

)
, a > 0.

–0.4

–0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1

Figure 29: The domain B for a = 1, i.e. −√
x − x2 ≤ y ≤ √

x − x2 for 0 ≤ x ≤ 1.

D. In this case it is possible to calculate the integral by using either rectangular or polar coordinates.

D 1. In rectangular coordinates the domain B is described by

B = {(x, y) | 0 ≤ 0 ≤ a, −
√

ax − x2 ≤ y ≤
√

ax − x2}.

I 1. The rectangular double integral is given by

I =
∫

B

x dS =
∫ a

0

x

{∫ √
ax−x2

−√
ax−x2

dy

}
dx =

∫
a

2a
√

ax − x2 dx.

The trick in problems of this type is to call the “ugly” part something different. We put

t = ax − x2, dt = (a − 2x) dx.

Then by adding the right term and subtract it again we get

I =
∫ a

0

2x
√

ax − x2 dx = −
∫ a

0

(a − 2x − a)
√

ax − x2 dx

= −
∫ a

0

√
ax − x2 · (a − 2x) dx + a

∫ a

0

√
ax − x2 dx

= −
∫ a

x=0

√
t dt + a

∫ a

0

√
ax − x2 dx

= −
[
2
3
(
ax − x2

) 3
2

]a
0

+ a

∫ a

0

√
ax − x2 dx = 0 + a

∫ a

0

√
ax − x2 dx.

The integral
∫ a

0

√
ax − x2 dx does not look nice; but the geometrical interpretation helps a lot:

The integral is the area of the domain between the x-axis and the curve

y = +
√

ax − x2,

The plane integral
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i.e. (cf. the figure) the area of a half-disc of radius
a

2
. Therefore,

I = a ·
{

1
2
· π
(a

2

)2}
=

πa3

8
.

D 2. The polar version; do not forget the weight function �.

I 2. When we put x = � cos ϕ and y = � sin ϕ, the equation of the boundary curve becomes

0 = x2 + y2 − ax = �2 − a � cos ϕ = �(� − a cos ϕ).

Since � = 0 corresponds to the point (0, 0), it follows that the boundary curve is described by

� = a cos ϕ med − π

2
≤ ϕ ≤ π

2
.

The parametric domain A corresponding to B is therefore

A =
{

(�, ϕ)
∣∣∣ −π

2
≤ ϕ ≤ π

2
, 0 ≤ � ≤ a cos ϕ

}
.

When we use the first version of the reduction formula we get

–1.5
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1
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0.2 0.4 0.6 0.8 1 1.2

x

Figure 30: The parametric domain A in the (�, ϕ)-plane.

∫
B

x dS =
∫ π

2

−π
2

{∫ a cos ϕ

0

� cos ϕ · � d�

}
dϕ =

∫ π
2

−π
2

cos ϕ

{∫ a cos ϕ

0

�2 d�

}
dϕ.

When we calculate the inner integral we get∫ a cos ϕ

0

�2 d� =
[
1
3

�3

]a cos ϕ

0

=
a3

3
cos3 ϕ.

Then by insertion∫
B

x dS =
a3

3

∫ π
2

−π
2

cos4 � dϕ = 2 · a3

3

∫ π
2

0

cos4 ϕdϕ,

where we use that the even function cos4 ϕ is integrated over a symmetric interval.
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When we shall calculate a trigonometric integral, where the integrand is of even order, we change
variables to the double angle:

cos4 x =
{
cos2 x

}2
=
{

1
2

(1 + cos 2x)
}2

=
1
4
{
1 + 2 cos 2x + cos2 2x

}
=

1
4

{
1 + 2 cos 2x +

1
2

(1 + cos 4x)
}

=
3
8

+
1
2

cos 2x +
1
8

cos 4x.

Finally, by insertion,∫
B

x dS =
2
3

a3

∫ π
2

0

{
3
8

+
1
2

cos 2x +
1
8

cos 4x

}
dx =

2
3

a3 · 3
8

π

2
+ 0 + 0 =

πa3

8
. ♦

The plane integral
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4 The space integral

4.1 Rectangular coordinates

Example 4.1

A. Calculate the space integral

I =
∫

A

(3 + y − z)x dΩ,

where

A = {(x, y, z) ∈ R
3 | (x, y) ∈ B, 0 ≤ z ≤ 2y},

and B is the upper triangle shown on the figure.
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Figure 31: The domain B, i.e. the projection of the domain A onto the (x, y)-plane.

D Apply the first rectangular reduction theorem in 3 dimensions.

We have according to the first rectangular reduction theorem that

(7) I =
∫

A

(3 + y − z)x dΩ =
∫

B

{∫ 2y

0

(3 + y − z) dz

}
dS.

Considering x and y as constants, we calculate the inner and concrete integral,

∫ 2y

0

(3 + y − z)x dz = x

∫ 2y

0

(3 + y − z = dz = x

[
(3 + y)z − 1

2
z2

]2y

z=0

= x
{
(3 + y) · 2y − 2y2

}
= x · 2y{3 + y − y} = 6xy.

When this result is inserted into (7), it is reduced to an abstract plane integral over B, i.e. of a
lower dimension,

I =
∫

B

6xy dS = 6
∫

B

xy dS.

The space integral
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Figure 32: The domain A.

We have already calculated the abstract plane integral in Example 3.1,∫
B

xy dS =
5
6
,

hence

I =
∫

A

(3 + y − z)x dΩ = 6
∫

B

xy dS = 6 · 5
6

= 5. ♦

Example 4.2

A. Calculate the space integral∫
A

(x + 2y + z) exp
(
z4
)

dΩ,

where

A = {(x, y, z) | z ∈ [2, 0], (x, y) ∈ B(z)}
with a cut at the height z,

B(z) = [0, z] ×
[
0,

z

2

]
, z ∈ ]0, 2].

D. Apply the second reduction theorem in 3 dimensions.

I. When we insert into the second reduction theorem, we get

I =
∫

A

(x + 2y + z) exp
(
z4
)

dΩ(8)

=
∫ 2

0

exp
(
z4
){∫

B(z)

(x + 2y + z) dS

}
dz.

The space integral
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For every fixed z we reduce the inner abstract plane integral,∫
B(z)

(x + 2y + z) dS =
∫

B(z)

x dS +
∫

B(z)

2y dy + z

∫
B(z)

dS

=
∫ z

0

x dx ·
∫ z

2

0

dy +
∫ z

0

dx ·
∫ z

2

0

2y dy + z · areal B(z)

=
z2

2
· z

2
+ z · z2

4
+ z ·

{
z · 1

2
z

}
= z3.

By insertion of this result into (8), using the substitution

t = z4, dt = 4z3 dz, dvs. z3 dz =
1
4

dt,

we finally get

I =
∫ 2

0

exp
(
z4
) · z3 dz =

∫ 24

0

et · 1
4

dt =
1
4
(
e16 − 1

)
. ♦

The space integral
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4.2 Semi-polar coordinates

Example 4.3

A. Calculate the space integral

I =
∫

A

x2yz dΩ,

where

A = {(x, y, z) ∈ R
3 | x2 + y2 ≤ a2, y ≥ 0, 0 ≤ z ≤ h}.

–0.5

0

0.5
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Figure 33: The domain A for a = h = 1 with a cut B(ϕ).
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Figure 34: The projection of A onto the (x, y)-plane (a = 1).

D. It is here possible to go through with the rectangular calculations, but we end up with the same
problems as in Example 3.6. We therefore here choose the semi-polar representation, where we
must not forget to add the weight function � as a factor.

The space integral
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When we use semi-polar coordinates. the domain A is represented by the parametric domain

Ã = {(�, ϕ, z) | 0 ≤ � ≤ a, 0 ≤ ϕ ≤ π, 0 ≤ z ≤ h}.

Then we get at least two possibilities for the reduction.

I 1. For fixed ϕ the domain A is cut into B(ϕ) = [0, a] × [0, h]. In this case we get the following
reduction where ϕ is kept in the outer integral,

I =
∫ π

0

{∫
B(ϕ)

z · �2 cos2 ϕ · � sin ϕ · � d�

}
dϕ

=
∫ π

0

cos2 ϕ sin ϕdϕ ·
∫ h

0

z dz ·
∫ a

0

�4 d�

=
[
−1

3
cos3 ϕ

]π
0

·
[
1
2

z2

]h
0

·
[
1
5

�5

]a
0

=
2
3
· 1
2

h2 · 1
5

a5 =
1
15

h2a5.

I 2. If we instead integrate first after z, then we get where we use that B is a half disc,

I =
∫

B

x2y

{∫ h

0

z dz

}
dS

=
[
1
2

z2

]h
0

·
∫ π

0

{∫ a

0

�2 cos2 ϕ · � sinϕ · � d�

}
dϕ

=
1
2

h2

∫ π

0

cos2 ϕ sin ϕdϕ ·
∫ a

0

�4 d�

=
1
2

h2

[
−1

3
cos3 ϕ

]π
0

· a5

5
=

1
15

h2a5.

C. Weak control (considerations of the dimension). Since

x ∼ a, y ∼ a, z ∼ h,

∫
· · · dΩ =

∫
· · · dx dy dz ∼ a · a · h = a2h

we get

I =
∫

A

x2y2z dΩ ∼ a2 · a2 · h · (a2h) = h2a5,

hence the result must be of the form constant·h2a5. If this is not the case, we have made an error.
On the other hand, even if we get a result like c · h2a2, the constant c may still be calculated
wrongly, explaining why the method is only giving a weak control. ♦

The space integral
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Example 4.4

A. Calculate the space integral

I =
∫

A

xy2z dΩ,

where

A = {(x, y, z) ∈ R
3 | x2 + y2 ≤ a2, x ≥ 0,

√
x2 + y2 ≤ z ≤ a}.

By considering the dimensions we get x, y, z ∼ a and
∫ · · · dΩ ∼ a3, so

I =
∫

A

xy2z dΩ ∼ ·a2 · a · a3 = a7.

Therefore, the result must be of the form constant·a7.

D. The shape of A (as a part of a body of revolution) is an invitation to use semi-polar coordinates
(it cannot be said too often: Do not forget the weight function �! ), where A is represented by

Ã =
{

(�, ϕ, z)
∣∣∣ 0 ≤ � ≤ a, −π

2
≤ ϕ ≤ π

2
, � ≤ z ≤ a

}
.

The space integral
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Figure 35: The domain A for a = 1.
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Figure 36: The cut in the meridian half-plane for a = 1.

I. The cut B(ϕ), which is revolved around the z-axis, must be independent of ϕ, so have in the
meridian half plane

B(ϕ) = {(�, z) | 0 ≤ z ≤ a, 0 ≤ � ≤ z}.
Then we get by the reduction theorem that the ϕ-integral can be factored out,

I =
∫ π

2

−π
2

{∫
B(ϕ)

� cos ϕ · �2 sin2 ϕ · z · � d� dz

}
dϕ

=
∫ π

2

−π
2

sin2 ϕ · cos ϕdϕ ·
∫

B(ϕ)

�4z d� dz

=
[
1
3

sin3 ϕ

]π
2

−π
2

·
∫ a

0

z

{∫ z

0

�4 d�

}
dz =

2
3
·
∫ a

0

z · 1
5

z5 dz

=
2
15

∫ a

0

z6 dz =
2
15

· 1
7

a7 =
2

105
a7.

C. It is seen as a weak control that the result is of the form constant·a7 as mentioned in A. ♦

The space integral
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4.3 Spherical coordinates

Example 4.5

A. Let A be an upper half sphere of radius 2a, from which we have removed a cylinder of radius a
and then halved the resulting domain by the plane x + y = 0. We shall only consider that part for
which x + y ≥ 0. Calculate the space integral∫

A

xz dΩ.
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Figure 37: The domain A for a = 1 in the (x, y, z)-space.
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Figure 38: The cut in the meridian half-plane for a = 1, i.e. in the (�, z)-half-plane.

When we consider the dimensions (i.e. a rough overview) we get

x ∼ a, y ∼ a, z ∼ a,

∫
A

· · · dΩ ∼ a3,

The space integral
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Figure 39: The projection of A onto the (x, y)-plane for a = 1.

from which
∫

A
xz dΩ ∼ a5, and thus∫

A

xz dΩ = constant · a5.

D. The geometrical structure of revolution and the sphere indicate that one either should apply I 1.
semi-polar coordinates or I 2. spherical coordinates. We shall in the following go through both
possibilities for comparison.

The space integral
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I 1. In semi-polar coordinates the domain A is represented by

Ã =
{

(�, ϕ, z)
∣∣∣∣ a ≤ � ≤ 2a,−π

4
≤ ϕ ≤ 3π

4
, 0 ≤ z ≤

√
4a2 − �2

}
.

Hence by the reduction theorem (where the weight function is �),

I =
∫

A

xz dΩ =
∫ 3π

4
−π

4

{∫ 2a

a

{∫ √
4a2−�2

0

� cos ϕ · z dz

}
� d�

}
dϕ

=
∫ 3π

4

−π
4

cos ϕdϕ ·
∫ 2a

a

�2

{∫ √
4a2−�2

0

z dz

}
d�

= [sinϕ]
3π
4
−π

4
·
∫ 2a

a

�2

[
1
2

z2

]√4a2−�2

0

d� =
√

2 · 1
2

∫ 2a

a

�2
(
4a2 − �2

)
d�

=
√

2
2

∫ 2a

a

(
4a2�2 − �4

)
d� =

√
2

2

[
4
3

a2�3 − 1
5

�5

]2a

a

=
√

2
2

{(
4
4
3 a2 · 8a3 − 32

5
a5

)
−
(

4
3

a2 · a3 − 1
5

a5

)}

=
√

2
2

a5

{
32
3

− 32
5

− 4
3

+
1
5

}

=
√

2
2

a5 ·
{

28
3

− 31
5

}
=

47
√

2 a5

30
.

I 2. If we instead choose spherical coordinates then

x = r sin θ cos ϕ, y = r sin θ sinϕ, z = r cos θ,

where θ is measured from the z-axis (and not from the (x, y)-plane, which one might expect), and
the weight function is r2 sin θ, and the domain A is represented by the parametric space

Â =
{

(r, ϕ, θ)
∣∣∣∣ −π

4
≤ ϕ ≤ 3π

4
,

π

6
≤ θ ≤ π

2
,

a

sin θ
≤ r ≤ 2a

}
,

where the vertical bounding line for B0 is described by r sin θ = a, so the lower bound for r is
a

sin θ
≤ r.

The space integral
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Then we get by the reduction theorem∫
A

xz dΩ =
∫ 3π

4

−π
4

{∫ π
2

π
6

{∫ 2a

a
sin θ

r sin θ cos ϕ · r cos θ r2 sin θ dr

}
dθ

}
dϕ

=
∫ 3π

4

−π
4

cos ϕdϕ ·
∫ π

2

π
6

sin2 θ cos θ

{∫ 2a

a
sin θ

r4 dr

}
dθ

= [sinϕ]
3π
4
−π

4
·
∫ π

2

π
6

sin2 θ · cos θ

[
1
5

r5

]2a

a
sin θ

dθ

=
√

2 · 5
∫ π

2

π
6

sin2 θ cos θ ·
{

32 a5 − a5

sin5 θ

}
dθ

=
√

2
5

a5

∫ π
2

π
6

{
32 sin2 θ − 1

sin3 θ

}
cos θ dθ

=
√

2
5

a5

[
32
3

sin3 θ +
1
2

1
sin2 θ

]
π

6

π
2

=
√

2
5

a5

{(
32
3

+
1
2

)
−
(

32
3

· 1
8

+
1
2
· 4
)}

=
√

2
5

a5

{
32
3

+
1
2
− 4

3
− 2
}

=
47
√

2
60

a5.

C. We see in both variants that the result is ∼ a5, so we get a weak control, cf. the examination of
the dimensions in A. ♦

Example 4.6

A. Let A be the spindle formed domain on the figure, which is obtained by revolving the figure in the
meridian half-plane around the z-axis. Calculate the space integral I =

∫
A

z dΩ.
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Figure 40: The domain A for a = 1 in the (x, y, z)-space.

An examination of the dimensions gives z ∼ a and
∫

A
· · · dΩ ∼ a3, hence

I =
∫

A

z dΩ = c · a · a3 = c · a4,

The space integral



Download free books at BookBooN.com

Real Functions in Several Variables

62 
 

0

0.2

0.4

0.6

0.8

1

y

0.1 0.2 0.3 0.4 0.5

x

Figure 41: The meridian half-plane with the curve r =
√

cos 2θ for a = 1 given spherically, i.e. r is
the distance from (0, 0) to a point on the curve.

where the task now is to find c.

D. Since A is a domain of revolution it is natural either to choose spherical or semi-polar coordinates.
In this particular case is the variant I 1. Spherical coordinates the easiest one to apply. We have
for comparison added I 2, so one can see what may happen if one only chooses to apply one
method on all problems.

I 1. We have in spherical coordinates that

x = r sin θ cos ϕ, y = r sin θ sinϕ, z = r cos θ,

represent A by the parametric domain (cf. the figure over the meridian half-plane)

The space integral
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Ã = {(r, ϕ, θ) | 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π

4
, 0 ≤ r ≤ a

√
cos 2θ}.

Since neither the bounds for θ or r, the weight function r2 sin θ or z = r cos θ contain the variable
ϕ, we can factorize the integrations∫ 2π

0

1 dϕ = 2π,

hence we get by the reduction theorem,

I = 2π
∫ π

4

0

{∫ a
√

cos 2θ

0

r cos θ · r2 sin θ dr

}
dθ

= 2π
∫ π

4

0

cos θ sin θ

{∫ a
√

cos 2θ

0

r3 dr

}
dθ.

We first calculate the inner integral, where θ is considered as a constant,

∫ a
√

cos 2θ

0

r3 dr =
[
1
4

r4

]a√cos 2θ

0

=
a4

4
cos2 2θ.

Then by insertion,

I = 2π
∫ π

4

0

cos θ sin θ · a4

4
cos2 2θ dθ

=
πa4

4

∫ π
4

0

cos2 2θ sin 2θ dθ =
πa4

4

∫ π
4

θ=0

cos2 2θ
(
−1

2

)
d cos 2θ

= −πa4

8

[
1
3

cos3 2θ
]
0

π

4
=

πa4

24
{1 − 0} =

πa4

24
.

I 2. Let us now turn to the semi-polar variant. The problem with this is to find � = P (z) as a
function of z for the boundary curve r = a

√
cos 2θ for the domain in the meridian half-plane.

When we express � by means of r and θ we get (cf. e.g. the meridian-half-plane)

� = r sin θ and z = r cos θ. hence r2 = �2 + z2.

Then the task is to eliminate r and θ from r = a
√

cos 2θ. By squaring this equation we get

r2 = a2 cos 2θ = a2
(
cos2 θ − sin2 θ

)
.

The space integral
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It follows from the expressions of � and z that we can get rid of cos2 θ and sin2 θ by multiplying
by r2, i.e.

(
r2
)2

=
(
�2 + z2

)2
= a2

(
r2 cos2 θ − r2 sin2 θ

)
= a2z2 − a2�2.

Since r ≥ 0 and � ≥ 0, these two operations are “equivalent”, i.e. we have not obtained some
further “false solutions”.

When the equation above is rearranged we get an equation of second order in �2,

(
�2
)2

+
(
2z2 + a2

)
�2 + z4 − a2z2 = 0.

This is solved in high school manner, where we just put + in front of the square root, because
�2 > 0,

�2 =
1
2

{
−(2z2 + a2) +

√
(2z2 + a2)2 − 4z4 + 4z2a2

}
=

1
2

{√
4z4 + 4z2a2 + a4 − 4z4 + 4z2a2 − (2z2 + a2

)}
=

1
2

{
a
√

8z2 + a2 − (2z2 + a2)
}

.

A test shows that �2 = 0 for z = 0 and z = a, which is in harmony with the situation in the
meridian half-plane.

Formally A is therefore in semi-polar coordinates represented by the parametric space

Â =

{
(�, ϕ, z)

∣∣∣∣∣ ≤ ϕ ≤ 2π, 0 ≤ z ≤ a, 0 ≤ � ≤
√

1
2

{
a
√

8z2 + a2 − (2z2 + a2)
}}

,

which does not look too nice. However, it is not as bad as it seems to be, because the integrand
only depends on z. By using the “slice method”, we get by a reduction that

I =
∫

A

z dΩ =
∫ a

0

z

{∫
B(z)

dS

}
dz =

∫ a

0

z · areal B(z) dz,

where B(z) is the disc of radius

� = P (z) =

√
1
2

{
a
√

8z2 + a2 − (2z2 + a2)
}

.

Then

area B(z) = π {P (z)}2 =
π

2

{
a
√

8z2 + a2 − (2z2 + a2)
}

,
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from which

I =
∫

A

z dΩ =
∫ a

0

z · area B(z) dz

=
π

2

∫ a

0

{
a
√

8z2 + a2 − 2z2 − a2
}

z dz (substitute: t = z2, dt = 2z dz)

=
π

4

∫ a2

0

{
a
√

8t + a2 − 2t − a2
}

dt

=
π

4
a

∫ a2

0

√
8t + a2 dt − π

4
[
t2 + a2t

]a2

0

=
π

a

[
1
8
· 2
3
(
8t + a2

) 3
2

]a2

0

− π

2
a4

=
π

4
a · 1

12
{27a3 − a3} − π

2
a4 =

π

24
a4 (13 − 12) =

π

24
a4.

C. Weak control. We see in both cases that the result is of the form c · a4, as already deduced in A.

Remark 4.1 We see that this problem could be calculated in both spherical and semi-polar coor-
dinates, though the variant of the semi-polar coordinates was far more difficult than the spherical
version. Occasionally one may find similar problems in examinations sets, where the composer of the
problem thought that it was obvious to use the spherical coordinates, while the students unfortunately
preferred the semi-polar coordinates instead. This has through the years caused a lot of frustration.
Therefore, try also to learn the spherical method as well as the semi-polar version, and examine the
role of the geometry in the choice of method. ♦
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5 The line integral

Example 5.1

A. Find the curve length from (0, 0) of any finite piece (0 ≤ ϕ ≤ α) of the Archimedes’s spiral, given
in polar coordinates by

� = aϕ, 0 ≤ ϕ < +∞, hvor a > 0,

i.e. calculate the line integral

	 =
∫ α

ϕ=0

ds.

–6

–4

–2

0

2

4

6

8

–8 –6 –4 –2 2 4 6

Figure 42: A piece of the Archimedes’s spiral for a = 1.

D. First find the line element ds expressed by means of ϕ and dϕ.

We shall here meet a very unpleasant integral, which we shall calculate in three different ways:

1) by a substitution,

2) by using partial integration,

3) by using a pocket calculator.

I. Since � = P (ϕ) = aϕ, and since we have a description of the curve in polar coordinates, the line
element is

ds =
√

{P (ϕ)}2 + {P ′(ϕ)}2 dϕ =
√

(aϕ)2 + a2 dϕ = a
√

1 + ϕ2 dϕ.

Then by a reduction,

	 =
∫ α

ϕ=0

ds =
∫ α

0

a
√

1 + ϕ2 dϕ = a

∫ α

0

√
1 + ϕ2 dϕ.

The line integral
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1) Since 1+ sinh2 t = cosh2 t, we have
√

1 + sinh2 t = +cosh t, because both sides of the equation
sign must be positive. Thus we can remove the square root of the integrand by using the
monotonous substitution,

ϕ = sinh t, dϕ = cosh t dt, t = Arsinh ϕ = ln
(
ϕ +
√

1 + ϕ2
)

.

Since t can be expressed uniquely by ϕ, the substitution must be monotonous.

Then

	 = a

∫ α

0

√
1 + ϕ2 dϕ = a

∫ α

ϕ=0

√
1 + sinh2 t · cosh t dt

= a

∫ α

ϕ=0

cosh2 t dt = a · 1
2

∫ α

ϕ=0

{cosh 2t + 1} dt

=
a

2

[
1
2

sinh 2t + t

]α
ϕ=0

=
a

2
[(t + sinh t · cos t)]αϕ=0

=
a

2

[
t + sinh t ·

√
1 + sinh2 t

]α
ϕ=sinh t=0

=
a

2

[
ln
(
ϕ +
√

1 + ϕ2
)

+ ϕ ·
√

1 + ϕ2
]α
0

=
a

2

{
α
√

1 + α2 + ln
(
α +
√

1 + α2
)}

.

2) If we instead apply partial integration, then

	 = a

∫ α

0

√
1 + ϕ2 dϕ = a

∫ α

0

1 ·
√

1 + ϕ2 dϕ

= a
[
ϕ
√

1 + ϕ2
]α
0
− a

∫ α

0

ϕ · ϕ√
1 + ϕ2

dϕ

= a

{
α
√

1 + α2 −
∫ α

0

(
ϕ2 + 1

)− 1√
1 + ϕ2

dϕ

}

= a

{
α
√

1 + α2 −
∫ α

0

√
1 + ϕ2 dϕ +

∫ α

0

dϕ√
1 + ϕ2

}

= −a

∫ α

0

√
1 + ϕ2 dϕ + a

{
α
√

1 + α2 + ln
(
α +
√

1 + α2
)}

.

The first term is −a
∫ α

0

√
1 + ϕ2 dϕ = −	, so we get by adding 	 and dividing by 2 that

	 =
a

2

{
α
√

1 + α2 + ln
(
α +
√

1 + α2
)}

.

3) This is an example where a pocket calculator will give an equivalent, though different answer,
so it is easy to see for the teacher, whether a pocket calculator has been applied or not. It is
here illustrated by the use of a TI-89, where the command is given by

a 


∫
(
√

(1 + t^2), t, 0, b),

because neither ϕ nor α are natural. Then the answer of the pocket calculator is

(9) a ·
(

ln(
√

b2 + 1 + b)
2

+
b
√

b2 + 1
2

)
,
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followed by writing α again instead of b.

However, if one does not apply a pocket calculator, but instead uses the standard methods of
integration, one would never state the result in the form (9). The reason for this discrepancy
is that the programs of the pocket calculator are created from specialists in Algebra, and
they do not always speak the same mathematical language as the specialists in Calculus or
Mathematical Analysis. In Calculus the priority of the terms would be (b = α)

a

2

{
α
√

1 + α2 + ln
(
α +
√

1 + α2
)}

,

because one would try to put as many factors as possible outside the parentheses and then
order the rest of the terms, such that the simplest is also the first one. Obviously, this is not
the structure of (9).

The phenomenon was discovered at an examination where pocket calculators were only allowed
if one also wrote down the applied command and the type of the pocket calculator. Many
students did not do it, and yet it was discovered that they had used a pocket calculator.

The morale of this story is that even if a pocket calculator may give the right result, this result
does not have to be put in a practical form. It is even worse by applications of e.g. MAPLE

The line integral
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where the result is sometimes given in a form using functions which are not known by students
of Calculus.

Note also that pocket calculators in general do not like the operations | · | and
√·, and cases

where we have got two parameters. The latter is not even one of the favorites of MAPLE
either, and it is in fact possible to obtain some very strange results by using MAPLE on even
problems from this part of Calculus. I shall therefore warn the students: Do not use pocket
calculators and computer programs like MAPLE or Mathematica uncritically! Since they exist,
they should of course be applied, but do it with care. ♦

Example 5.2

A. Find the value of the line integral I =
∫
K |y| ds, where K is the cardioid given in polar coordinates

by

� = P (ϕ) = a(1 + cosϕ), −π ≤ ϕ ≤ π.

–1

–0.5

0

0.5

1

0.5 1 1.5 2

Figure 43: The cardioid for a = 1; (κα�δια = heart).

Examination of dimensions: Since � ∼ a, We get
∫
K · · · ds ∼ a, and since y ∼ a, The result must

be of the form c · a · a = c · a2.

Due to the numerical sign in the integrand we must be very careful. In particular, a pocket
calculator will be in big trouble here, if one does not give it a hand from time to time during the
calculations.

D. First find the line element ds.

I. The line element is seen to be

ds =
√
{P (ϕ)}2 + {P ′(ϕ)}2 dϕ =

√
{a(1 + cosϕ)}2 + (−a sin ϕ)2 dϕ

= a

√
(1 + 2 cos ϕ + cos2 ϕ) + sin2 ϕdϕ = a

√
2 ·
√

1 + cos ϕ dϕ.

The line integral
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Figure 44: The space curve x = r(t).

The line integral becomes

I =
∫ 2

1

1
t
·
{

(
√

2 · t)2 + 2
(

1
2

t2
)}

·
(

1
t

+ t

)
dt

=
∫ 2

1

1
t

(
2t2 + t2

) · (1
t

+ t

)
dt =

∫ 2

1

(3 + 3t2) dt = 3 +
[
t3
]2
1

= 10. ♦

Example 5.4

A. Let a, h > 0. Consider the helix

r(t) = (x, y, z) = (a cos t, a sin t, h t), t ∈ R.

This is lying on the cylinder x2 + y2 = a2.

Find the natural parametric representaion of the curve from (a, 0, 0), corresponding to t = 0.

0.5

1

1.5

2

–1

–0.5

0.5

1

–1

–0.5

0.5

1

Figure 45: The helix for a = 1 and h =
1
5
.

D. Find the arc length s = s(t) as a function of the parameter t. Solve this equation t = t(s), and
put the result into the parametric representation above.
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I. Let us first find the line element ds = ‖r′(t)‖ dt. Since

r′(t) = (−a sin t, a cos t, h),

we have

‖r′(t)‖ =
√

a2 sin2 t + a2 cos2 t + h2 =
√

a2 + h2,

hence the arc length is

s = s(t) =
∫ t

0

‖r′(τ)‖ dτ =
∫ t

0

√
a2 + h2 dτ =

√
a2 + t2 · t.

By solving after t we get

t = t(s) =
s√

a2 + h2
.

When this is put into the parametric representation of the helix, we get

(x, y, z) = (a cos t, a sin t, h t)

=
(

a cos
(

s√
a2 + h2

)
, a sin

(
s√

a2 + h2

)
,

h s√
a2 + h2

)
, s ∈ R,

which is the natural parametric representation of the helix. ♦

The line integral
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6 The surface integral

Example 6.1

A. Find the surface integral I =
∫
F |z| dS, where F is given by the parametric representation

(x, y, z) = r(u, v) = (u sin v, u cos v, u v) = u (sin v, cos v, v),

where −1 ≤ u ≤ 1, 0 ≤ v ≤ 1.

–1

1
–1

–0.5

0.5

1

–0.8
–0.6

–0.4
–0.2

0.2
0.4

0.6
0.8

Figure 46: The surface F has two components.

If we keep u = 1 fixed and let v vary, then we get an arc of the helix with a = h = 1, cf.
Example 5.4. When (0, 0, 0) is removed, the surface is split into its two components F1 and F2,
which are symmetric with respect to the point (0, 0, 0). The surface F1 is obtained by drawing all
lines from (0, 0, 0) to a point on the helix.

D. The area element is given by dS = ‖N(u, v)‖ du dv. We first calculate the normal vector N(u, v)
corresponding to the given parametric representation.

I. It follows from r(u, v) = u (sin v, cos v, v) that

∂r
∂u

= (sin v, cos v, v),
∂r
∂v

= u (cos v,− sin v, 1),

hence the normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣
e1 e2 e3

sin v cos v v
u cos v −u sin v u

∣∣∣∣∣∣
= u (cos v + v sin v, v cos v − sin v,−1)

= u{(cos v,− sin v,−1) + v (sin v, cos v, 0)}.

Now

(cos v,− sin v,−1) · (sin v, cos v, 0) = 0,

69
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so the two vectors are perpendicular. Then we get by Pythagoras’s theorem

‖N(u, v)‖2 = u2
{‖(cos v,− sin v,−1)‖2 + v2‖(sin v, cos v, 0)‖2

}
= u2

{(
cos2 v + sin2 +1

)
+ v2

(
sin2 v + cos2 +02

)}
= u2

{
2 + v2

}
.

Notice that −1 ≤ u ≤ 1 shows that u may be negative. When we take the square root we get the
area element

dS = ‖N(u, v)‖ du dv = |u|
√

2 + v2 du dv.

Putting D = [−1, 1] × [0, 1] we get by the reduction formula

I =
∫
F
|z| dS =

∫
D

|u v| · |u|
√

2 + v2 du dv

=
∫ 1

−1

{∫ 1

0

|u|2|v|
√

2 + v2 dv

}
du =

∫ 1

−1

u2 du ·
∫ 1

0

√
2 + v2 · v dv

=
[
1
3

u3

]1
−1

·
∫ 3

2

√
t · 1

2
dt =

2
3
·
(

1
2

[
2
3

t
3
2

]3
2

)

=
2
9

(3
√

3 − 2
√

2). ♦

Example 6.2

A. Let F be the surface given by the graph representation

0 ≤ x ≤
√

3, 0 ≤ y ≤
√

1 + x2, z = xy.

Find the surface integral
∫
F z dS.
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Figure 47: The surface F with its projection E.

D. The usual procedure is to consider F as a graph of the function

z = f(x, y) = xy, (x, y) ∈ E.

We shall not do this here, but instead alternatively introduce a rectangular parametric represen-
tation (x, y, z) = r(u, v). Then afterwards we shall find the weight function ‖N(u, v)‖.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 48: The projection E of F in the (x, y)-plane.

I. The parameters u and v are for obvious reasons not given above. They are introduced by duplicating
(x, y) by the trivial formula

(x, y) = (u, v),

i.e. we choose the parametric representation

r(u, v) = (x, y, z) = (u, v, uv), 0 ≤ u ≤
√

3, 0 ≤ v ≤
√

1 + u2,
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so we can distinguish between (x, y) as the first two coordinates on the surface in the 3-dimensional
space, and (u, v) ∈ E in the parametric domain. By experience it is always difficult to understand
why we use this duplication, until one realizes that we in this way can describe two different aspects
(as described above) of the same coordinates. This will be very useful in the following.

Since

∂r
∂u

= (1, 0, v) and
∂r
∂v

= (0, 1, u),

the corresponding normal vector becomes

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣
e1 e2 e3

1 0 v
0 1 u

∣∣∣∣∣∣ = (−v,−u, 1).

Hence

‖N(u, v)‖ =
√

1 + u2 + v2.

When dS denotes the area element on F , and dS1 denotes the area element on E, then we have
the correspondence

dS =
√

1 + u2 + v2 dS1.

The abstract surface integral over F is therefore reduced to the abstract plane integral over E by∫
F

z dS =
∫

E

u v
√

1 + u2 + v2 dS.

Then we reduce the abstract plane integral over E in rectangular coordinates, where the v-integral
is the inner one,

∫
F

z dS =
∫

E

u v
√

1 + u2 + v2 dS =
∫ √

3

0

u

{∫ √
1+u2

0

√
1 + u2 + v2 v dv

}
du.

Calculate the inner integral by means of the substitution

t = v2, dt = 2v dv.

From this we get

∫ √
1+u2

0

√
1 + u2 + v2 v dv =

∫ 1+u2

0

√
1 + u2 + t · 1

2
dt

=
1
2

[
2
3
(
1 + u2 + t

) 3
2

]1+u2

t=0

=
1
3

{(
2(1 + u2)

) 3
2 − (1 + u2)

3
2

}

=
1
3

(2
√

2 − 1) · (1 + u2
) 3

2 .
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By insertion and b the substitution t = u2, dt = 2u du we finally get

∫
F

z dS =
∫ √

3

0

u · 1
3

(2
√

2 − 1) · (1 + u2
) 3

2 du

=
1
3

(2
√

2 − 1)
∫ √

3

0

(
1 + u2

) 3
2 u du

=
1
3

(2
√

2 − 1)
∫ 3

0

(1 + t)
3
2

1
2

dt

=
1
3

(2
√

2 − 1) · 1
2

[
2
5

(1 + t)
5
2

]3
0

=
1
15

(2
√

2 − 1) ·
{

4
5
2 − 1

}

=
31(2

√
2 − 1)

15
. ♦

Example 6.3

A. A surface of revolution O is obtained by revolving the meridian curve M given by

r = a(1 + sin θ), 0 ≤ θ ≤ π

2
, a > 0,

The surface integral
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where θ is the angle measured from the z-axis and r is the distance to (0, 0) (an arc of a cardioid,
cf. Example 5.2). Find the surface integral

I =
∫
O

z

x2 + y2 + z2
dS.

0.2
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0.6

0.8
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Figure 49: The surface O for a = 1.

An examination of the dimensions shows that x, y, z ∼ a and
∫
O · · · dS ∼ a2, thus∫

O

z

x2 + y2 + z2
dS ∼ a

a2
· a2 = a.

0
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0.4

0.6

0.8

1

1.2

0.5 1 1.5 2

Figure 50: The meridian curve M for a = 1.

The final result must therefore be of the form c · a, where c is the constant, we are going to find.

D. When we look at surfaces (or bodies) of revolution one should always try either semi-polar or
spherical coordinates. Since the parametric representation of the meridian curve M is given in a
way which is very similar to the spherical coordinates, it is quite reasonable to expect that one
should use spherical coordinates.

Although it is here possible to solve the problem by a very nasty trick, it is far better for pedagogical
reasons to follow the way which most students would go. Let us analyze the reduction formula

∫
O

f(x, y, z) dS =
∫ b

a

{∫ 2π

0

F (t, ϕ) dϕ

}
R(t) sinΘ(t)

√
{R′(t)}2 + {R(t)Θ′(t)}2 dt,
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where

F (t, ϕ) := f(R(t) sin Θ(t), cos ϕ,R(t) sin Θ(t) sin ϕ,R(r) cos Θ(t).

There is no t in A., so we must start by introducing the parameter t in a convenient form. Then
we shall identify the transformed function F (t, ϕ) as well as the weight function, and finally we
shall carry out all the integrations.

I. 1) The introduction of the parameter t. The most obvious thing is to by θ = t, i.e. M is described
by

r = R(t) = a (1 + sin t), θ = Θ(t) = t, 0 ≤ t ≤ π

2
.

By doing this we split the different aspects: θ belongs to the curve M, and t belongs to the
parametric interval[

0,
π

2

]
= [a, b].

2) Identification of F (t, ϕ) and the weight function. Since

z = R(t) cos Θ(t) = a(1 + sin t) cos t on M,

and

x2 + y2 + z2 = r2 = R(t)2 = a2(1 + sin t)2 on M,

we obtain the integrand

f(x, y, z) =
z

x2+y2+z2
=

a(1+sin t) cos t

a2(1+sin t)2
=

cos t

a(1+sin t)
= F (t, ϕ),

which is independent of ϕ. Since the weight function and the boundaries of does not depend
on t either, the ϕ-integral becomes trivial, and we can put

∫ 2π

0
dϕ = 2π outside the integral as

a factor.

Then we calculate the weight function,

R(t) sin Θ(t)
√

{R′(t)}2 + {R(t)Θ′(t)}2

= a(1 + sin t) · sin t ·
√
{a cos t}2 + {a(1 + sin t) · 1}2

= a(1 + sin t) · sin t · a
√

cos2 t + (1 + 2 sin t + sin2 t)

= a2(1 + sin t) · sin t ·
√

2(1 + sin t)

=
√

2 a2(1 + sin t)
3
2 · sin t.
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3) Integration by reduction. First we note that the parametric domain is 2-dimensional,

D =
{

(ϕ, t)
∣∣∣ 0 ≤ ϕ ≤ 2π, 0 ≤ t ≤ π

2

}
.

In fact, dimension corresponds to dimension, and since F is a C∞-surface, the parametric
domain D must necessarily be 2-dimensional. (If not we have made an error, so start from the
very beginning!)

The surface integral
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We have now identified all functions, so we get by the reduction formula that∫
O

z

x2 + y2 + z2
dS =

∫
D

cos t

a(1 + sin t)
·
√

2 a2 (1 + sin t)
3
2 sin t dϕ dt

=
√

2 · a · 2π
∫ π

2

0

sin t(1 + sin t)
1
2 cos t dt

= 2
√

2π a

∫ 1

0

u(1 + u)
1
2 du

= 2
√

2π a

∫ 1

0

(1 + u − 1) (1 + u)
1
2 du

= 2
√

2πa

∫ 1

0

{
(1 + u)

3
2 − (1 + u)

1
2

}
du

= 2
√

2π a

[
2
5

(1 + u)
5
2 − 2

3
(1 + u)

3
2

]1
0

= 2
√

2π a · 2
15

[
3(1 + u)

5
2 − 5(1 + u)

3
2

]1
0

=
4πa

15
·
√

2
{

3
(
2

5
2 − 1

)
− 5
(
2

3
2 − 1

)}
=

4πa

15

√
2 {3(4

√
2 − 1) − 5(2

√
2 − 1)}

=
4πa

15

√
2 {2

√
2 + 2} =

8πa

15

√
2 (

√
2 + 1)

=
8π(2 +

√
2)a

15
.

C. Weak control. The result has the form c · a, in agreement with A.

Since z ≥ 0 on O [cf. the figure], the result must be ≥ 0. We see that this is also the case here. ♦

Example 6.4

A. A surface of revolution O has an arc of a parable M as its meridian curve, where this is given by
the equation

z =
�2

a
, 0 ≤ � ≤ a, a > 0.

Find the surface integral

I =
∫
O

x2

√
a2 + 4az

dS.

The surface integral
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Figure 51: The surface O and its projection onto the (x, y)-plane for a = 1.
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Figure 52: The meridian curve M for a = 1.

Examination of the dimensions. It follows from x,y, z ∼ a, that

x2

√
a2 + 4az

∼ a2

√
a2

= a.

Since
∫
O · · · dS ∼ a2, we get all together∫

O

x2

√
a2 + 4az

dS ∼ a · a2 = a3,

i.e. the result must have the form∫
O

x2

√
a2 + 4az

dS = c · a3,

where the constant c must be positive, because the integrand is ≥ 0.

D. The description invites to semi-polar coordinates I 1. For the matter of training we also add I 2.
Rectangular coordinates, which give a slightly different variant, although we in the end is forced
back to (semi-)polar coordinates.

The surface integral
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I 1. Semi-polar coordinates. We introduce t as a parameter by

� = P (t) = t.

Then

z = Z(t) =
1
a

t2, 0 ≤ t ≤ a.

Since

x = P (t) cos ϕ = t cos ϕ, y = P (t) sin ϕ = t sin ϕ, z = Z(t) =
1
a

t2,

we get the following interpretation of the integrand,

f(x, y, z) =
x2

√
a2 + 4az

=
t2 cos2 ϕ√
a2 + 4t2

,

and the weight function is

P (t)
√
{P ′(t)}2 + {Z ′(t)}2 = t

√
12 +

(
2
a

t

)2

=
t

a

√
a2 + 4t2.

The parametric domain is

D = {(t, ϕ) | 0 ≤ t ≤ a, 0 ≤ ϕ ≤ 2π} = [0, a] × [0, 2π].

The surface integral
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Hence we get by a reduction

∫
O

x2

√
a2 + 4az

dS =
∫

D

t2 cos2 ϕ√
a2 + 4t2

· t

a

√
a2 + 4t2 dt dϕ

=
1
a

∫
D

t3 cos2 ϕdt dϕ =
1
a

∫ a

0

t3 dt ·
∫ 2π

0

cos2 ϕdϕ

=
1
a

[
1
4

t4
]a
0

·
∫ 2π

0

1 + cos 2ϕ

2
dϕ =

πa3

4
.

C 1. Weak control. The result has the right dimension [a3], and it is positive, cf. A.

I 2. The rectangular version. In this case we interpret the surface as the graph of the function

z = f(x, y) =
1
a

(x2 + y2) for (x, y) ∈ E,

where the parametric domain is the disc

E = {(x, y) | x2 + y2 ≤ a2}.

The weight function is√
1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

=

√
1 +
(

2x
a

)2

+
(

2y
a

)2

=
1
a

√
a2 + 4x2 + 4y2.

We have now found everything which is needed for an application of the reduction theorem:

∫
O

x2

√
a2 + 4az

dS =
∫

E

x2√
a2 + 4a · 1

a
(x2 + y2)

· 1
a

√
a2 + 4x2 + 4y2 dx dy

=
1
a

∫
E

x2√
a2 + 4x2 + 4y2

·
√

a2 + 4x2 + 4y2 dx dy =
1
a

∫
E

x2 dx dy.

From this point it is again most natural to change to polar coordinates,

∫
O

x2

√
a2 + 4az

dS =
1
a

∫
E

x2 dx dy =
1
a

∫ 2π

0

{∫ a

0

(� cos ϕ)2 · � d�

}
dϕ

=
1
a

∫ 2π

0

cos2 ϕdϕ ·
∫ a

0

�3 d� =
1
a
· π · a4

4
=

πa3

4
. ♦
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7 Transformation theorems

Example 7.1

A. Calculate the plane integral

I =
∫

B

cos
(

y − x

y + x

)
dx dy

over the trapeze shown on the figure.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2

x

Figure 53: The trapeze B.

D. A direct calculation applying one of the usual reduction theorems is not possible, because none of
the forms∫

cos
(

y − x

y + x

)
dx =

∫
cos
(

2y
y + x

− 1
)

dx =
∫

cos
(

1 − 2x
y + x

)
dy

can be integrated within the realm of our known functions. The situation is even worse in polar
coordinates. Therefore, the only possibility left is to find a convenient transform, such that the
integrand becomes more easy to handle.

The unpleasant thing is of course the fraction
y − x

y + x
. One idea would be to introduce the numerator

as a new variable, and the denominator as another new variable. If we do this, then we must show
that we obtain a unique correspondence between the domain B and a parametric domain D, which
also should be found. Finally we shall find the Jacobian. When we have found all the terms in the
transformation formula, then calculate the integral.

Remark 7.1 This time we see that it is here quite helpful to start the discussion in D, which is
not common knowledge from high school. First we discuss the problem. Based on this discussion
we make a decision on the further procedure. ♦

I. According to D. we choose the numerator and the denominator as our new variables. Most people
would here choose the numerator as u and the denominator as v, so we shall do the same, although
it can be shown that we shall get simpler calculations if we interchange the definition of u and v.
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We therefore put as the most natural choice

(10) numerator : u = y − x and denominator : v = y + x.

Then we shall prove that this gives a one-to-one correspondence. This means that we for any
given u and v obtain unique solutions x and y:

x =
v − y

2
and y =

u + v

2
.

Obviously the transform is continuous both ways. Since B is closed and bounded, the range D by
this transform is again closed and bounded, cf. the important second main theorem for continuous
functions.

Since the transform is one-to-one everywhere, the boundary ∂B is mapped one-to-one onto the
boundary ∂D. This is expressed in the following way:

1) The line x + y = 1 corresponds by (10) to v = 1.
2) The line y = x, i.e. y − x = 0, corresponds by (10) to u = 0.
3) The line y + x = 4 corresponds by (10) to v = 4.

4) The line y = 3x corresponds to
u + v

2
= 3

v − u

2
, i.e. to v = 2u.

Transformation theorems
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0

1

2

3

4

y

0.5 1 1.5 2

x

Figure 54: The parametric domain D. The skew line has the equation v = 2u or u =
1
2

v as its
representation.

The only closed and bounded domain in the (u, v)-plane, which has the new boundary curves as its
boundary is D as indicated on the figure. In practice one draws the lines v = 1, u = 0, v = 4 and
v = 2u and use the figure to find out where the bounded set D is situated, such that the boundary
consists of parts of all four lines.

Then we calculate the weight function
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣.
The “old fashioned” notation above indicates that we shall use the transform, where x and y (in
the “numerator”) are functions of u and v (in the “denominator”), i.e.

x =
1
2

v − 1
2

u and y =
1
2

u +
1
2

v.

This gives us the Jacobian

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−1

2
1
2

1
2

1
2

∣∣∣∣∣∣∣∣
=

1
2
· 1
2

∣∣∣∣ −1 1
1 1

∣∣∣∣ = 1
4
· (−2) = −1

2
.

It follows that the Jacobian is negative, hence the weight function becomes∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ = 1
2
.

Remark 7.2 If we here interchange u and v in (10), then we obtain that the Jacobian becomes
positive. ♦

We have now come to the reduction formula,

I =
∫

B

cos
(

y − x

y + x

)
dx dy =

∫
D

cos
(u

v

)
· 1
2

du dv.

Note that both sides here are abstract plane integrals.
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We see on the right hand side that
∫

cos
(u

v

)
dv cannot be integrated within the realm of our

known arsenal of functions. But
∫

cos
(u

v

)
du can! Therefore, when we reduce the plane integral

on the right hand side we put the u-integral as the inner integral. Then

I =
1
2

∫
D

cos
(u

v

)
du dv =

1
2

∫ 4

1

{∫ v
2

0

cos
(u

v

)
du

}
dv.

When v �= 0 is kept constant, we get from the inner integral

∫ v
2

0

cos
(u

v

)
du =

[
v sin

(u

v

)] v
2

0
= v sin

(
v

2
· 1
v

)
= sin

(
1
2

)
· v,

where sin
(

1
2

)
is a constant, which shall not be found explicitly! (Note that at

1
2

radian is not

equal to
π

2
).

Finally we get by insertion

I =
1
2

∫ 4

1

sin
(

1
2

)
· v dv =

1
2

sin
(

1
2

)
·
[
1
2

v2

]4
1

=
15
4

sin
(

1
2

)
. ♦

Example 7.2

A. Let

A = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √
x, −y ≤ z ≤ y}.

calculate

I =
∫

A

exp
(
(2 − y − z)3

)
4 + y + z

dΩ.
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Figure 55: The domain A. Note the different scales on the axes.
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D. Let us start by pulling out the teeth of this big and horrible example! Its purpose is only to
demonstrate that even apparent incalculable integrals in some cases nevertheless can be calculated
by using a “convenient transform”. This example is from a textbook, where earlier students got the
wrong impression that “every application of the transformation theorem looks like this example”,
which is not true. Without this extra comment this example will send a wrong message to the
reader.

Let us first discuss, how we can find a reasonable transform. I shall follow more or less the way of
thinking which the author of this example must have used, the first time it was created. (It would
be easier for me to ask him, because I know him, but that is not sporty.)

At the end of this example, in Remark 7.4, I shall describe the very modest requirements which may
be demanded of the students. In other words, this example should only be used as an inspiration
for other similar problems which may occur in practice (but not at the exams).

I. Let us start by looking at the geometry of A. The projection B of A onto the (x, y)-plane is

B = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √
x}.

Since A for every x ∈ ]0, 1] is cut into an isosceles rectangular triangle

Transformation theorems

�������	
���

������������
����������
���������	
	����

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346343/88


Download free books at BookBooN.com

Real Functions in Several Variables

89 
 

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1

x

Figure 56: The projection B of the domain A onto the (x, y)-plane.

Δx = {(y, z) | 0 ≤ y ≤ √
x, −y ≤ z ≤ y},

it is easy to sketch A, cf. a previous figure.

Then the integrand

exp
(
(2 − y − z)3

)
4 + y + z

should be “straightened out”. A reasonable guess would be to introduce

u = y + z.

Remark 7.3 Once we have gone through all the calculations it can be seen that

ũ =
y + z

2
,

would be a better choice, because then we shall get rid of a lot of irritating constants. Of peda-
gogical reasons we shall not here use the most optimal transform, but instead the transform which
one would expect the student to choose. ♦

Since we do not get further information from the integrand, we shall turn to the domain A. The
boundary of A is (almost) determined by putting equality sign into the definition of A instead of
≤. First everything is written in a “binary” way in the definition of A,

A = {(x, y, z) | 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ √
x ∧ −y ≤ z ≤ y}

= {(x, y, z) | 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ 0 ≤ √
x − y ∧ 0 ≤ y + z ∧ 0 ≤ y − z},

i.e. every condition which is defining A contains only one inequality sign and one of the sides of
the inequality is a constant.

We see that there are composed expressions in the latter three conditions,
√

x − y ≥ 0, y + z ≥ 0, y − z ≥ 0.

Since we already have chosen u = y + z ≥ 0, we get the inspiration of choosing the new variables

(11) u = y + z ≥ 0, v = y − z ≥ 0, w =
√

x − y ≥ 0,

where we have taken the most ugly term,
√

x − y and put it equal to w, i.e.

w =
√

x − y.
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We note that we by these choices have obtained that u, v, w ≥ 0, and that equality signs must
correspond to boundary points in the (u, v, w)-space for the parametric domain D.

Next we show that the transform (11) is one-to-one. i.e. we shall express x, y, z uniquely by u, v,
w. We get immediately from the first two equations that

y =
u + v

2
and z =

u − v

2
.

From the third equation we get

√
x = w + y = w +

u + v

2
=

1
2

(u + v + 2w),

which obviously is ≥ 0, because u, v, w ≥ 0. Therefore, by squaring,

x =
1
4

(u + v + 2w)2.

Thus, x, y, z are uniquely determined by u, v, w, so the transform is one-to-one.

Since the transform and its inverse are both continuous and the domain A is closed and bounded, it
follows from the second main theorem for continuous functions that D is also closed and bounded.
It follows from the binary representation of A that ∂A is a subset of the union of the surfaces
x = 0, x = 1, y = 0,

√
x − y = 0, y + z <= 0 and y − z = 0. These are now investigated one by

one.

0
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Figure 57: The projection of the parametric domain D in the (u, v)-plane.

1) The plane x = 0 corresponds to 1
4 (u + v + 2w)2 = 0. Since u, v, w ≥ 0, we only get

(u, v, w) = (0, 0, 0), which is in agreement with the figure of A, because the plane x = 0 just
cuts A in 0.

2) The plane x = 2 corresponds to 1
4 (u + v + w)2 = 1, i.e. 1

2 (u + v + 2w) = +1, from which

w = 1 − u + v

2
≥ 0.
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Here we have again used that u, v, w ≥ 0. Note that we also get that

u + v ≤ 2.

3) The plane y = 0 corresponds to 1
2 (u + v) = 0, i.e. u + v = 0.

4) The remaining conditions have been found previously for u = 0, v = 0 and w = 0.
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Figure 58: The parametric domain D.
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Summing up we find that the parametric domain is given by

D =
{

(u, v, w)
∣∣∣∣ 0 ≤ u, 0 ≤ u + v ≤ 2, 0 ≤ w ≤ 1 − u + v

2

}

=
{

(u, v, w)
∣∣∣∣ 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 − u, 0 ≤ w ≤ 1 − u + v

2

}

=
{

(u, v, w)
∣∣∣∣ (u, v) ∈ B, 0 ≤ w ≤ 1 − u + v

2

}
,

where the projection B in the (u, v)-plane is given by

B = {(u, v) | 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 − u},

so B and D are now easily sketched.

By the chosen transform the integrand is carried over into

exp
(
(2 − y − z)3

)
4 + y + z

=
exp
(
(2 − u)2

)
4 + u

.

Then we calculate the weight function
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣. First note that

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

(u + v + 2w)
1
2

(u + v + 2w) u + v + 2w

1
2

1
2

0

1
2

−1
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (u + v + 2w)

∣∣∣∣∣∣∣∣

1
2

1
2

1
2

−1
2

∣∣∣∣∣∣∣∣
= −1

2
(u + v + 2w).

Since u, v, w ≥ 0 in D, we see that the weight function is∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ = +
1
2

(u + v + 2w).

This is only 0 for (u, v, w) = (0, 0, 0) in D, i.e. in just one point, which is a null-set (without
a positive volume). Therefore we may continue with the transformation theorem in its abstract
form:

I =
∫

A

exp
(
(2 − y − z)3

)
4 + y + z

dx dy dz

=
∫

D

exp
(
(2 − u)3

)
4 + u

1
2

(u + v + 2w) du dv dw.

Here it is obvious that we shall not start by integrating after u. If we choose u as the last (i.e. the
outer) variable of integration, then we get by one of the reduction theorems that

(12) I =
1
2

∫ 2

0

exp
(
(2 − u)3

)
4 + u

{∫
B(u)

(u + v + 2w) dv dw

}
du,
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where B(u) is the cut of D for u constant, i.e.

B(u) =
{

(v, w)
∣∣∣∣ 0 ≤ v ≤ 2 − u, 0 ≤ w ≤ 1 − u + v

2

}
.

We calculate for fixed u ∈ [0, 2] the inner integral in (12) by first integrating vertically with respect
to w:∫

B(u)

(u + v + 2w) dv dw =
∫ 2−u

0

{∫ 1−u+v
2

0

(u + v + 2w) dw

}
dv.

We calculate the inner integral

∫ 1−u+v
2

0

(u + v + 2w) dw =
[
(u + v)w + w2

]1−u+v
2

0
= [w(u + v + w)]1−

u+v
2

0

=
{

1 − u + v

2

}{
1 +

u + v

2

}
= 1 − 1

4
(u + v)2.

By insertion we next get for fixed u that

∫
B(u)

(u + v + 2w) dw dv =
∫ 2−u

0

{
1 − 1

4
(u + v)2

}
dv =

[
v − 1

12
(u + v)3

]2−u

v=0

= −(u − 2) +
1
12
(
u3 − 23

)
=

1
12

(u − 2)
{−12 + u2 + 2u + 4

}
=

1
12

(u − 2)
{
u2 + 2u − 8

}
=

1
12

(u − 2)2(u + 4).

Notice that we here find all factors. When this result is put into (12), we get the reduction

I =
1
2

∫ 2

0

exp
(
(2 − u)3

)
4 + u

{∫
B(u)

(u + v + 2w) dv dw

}
du

=
1
2

∫ 2

0

exp
(
(2 − u)3

)
4 + u

· 1
12

(u − 2)2(u + 4) du

=
1
24

∫ 2

0

exp
(
(2 − u)3

)
(u − 2)2 du.

Now, choose the substitution t = (2 − u)3. Then dt = −3(2 − u)2 du, and thus

(u − 2)2 du = −1
3

dt.

Finally we get

I =
1
24

∫ 2

0

exp
(
(2 − u)3

)
(u − 2)2 du =

1
24

∫ (2−2)3

(2−0)3
exp(t) ·

(
−1

3

)
dt

=
1
72

∫ 8

0

et dt =
e8 − 1

72
.
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Remark 7.4 It is obvious from this example, that the application of transformation theorems is not
an easy job. Therefore, one will always be given the transform which should be applied,

u = f(x, y, z), v = g(x, y, z), w = h(x, y, z).

Then the task for the student can be described in the following points:

1) Solve the equations after x, y, z, (from this follows automatically that the transform is one-to-one),

x = F (u, v, w), y = G(u, v, w), z = H(u, v, w).

2) Identify the parametric domain; use here the second main theorem and that a boundary in most
cases by a continuous transform again is mapped into a part of the boundary.

3) Calculate the weight function
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ from the expressions found in 1).
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8 Improper integrals

Example 8.1

A. Let B = [0, 1]2 be the unit square. Examine whether the improper plane integral

I =
∫

B

1
y − x − 1

dS

is convergent. If this is the case, find its value.

D. The domain B is closed and bounded; but the integrand is not defined in all points of B. Cut away
open neighbourhoods of the points where the integrand is not defined; notice that the integrand
does not change sign; calculate the integral over any of the truncated domains and finally go to
the limit.

0

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1

Figure 59: The domain B with the skew singular line y = x + 1 and the singular point (0, 1), and a
convenient truncation parallel to the Y -axis.

I. The denominator must never be zero, so we have to avoid the line y = x + 1. This line cuts B at
the point (0, 1), which must be removed from the domain of integration.

Then we realize that
1

y − x − 1
< 0 everywhere in B \ {(0, 1)}, hence the integrand does not

change sign in the part of B, where it is defined. Therefore we shall not further divide the domain
according to the positive and the negative part of the integrand.

Our next step is to truncate B, such that the singular point (0, 1) does not lie in any of the closed
and bounded domains B(ε), and such that

areal(B \ B(ε)) → 0 for ε → 0.

The most reasonable truncations among many possibilities are given by

B(ε) = [ε, 1] × [0, 1] and B̃(ε) = [0, 1] × [ε, 1],

for 0 < ε < 1. We shall here choose the first one. Then by a reduction,

I(ε) =
∫

B(ε)

1
y − x − 1

dS =
∫ 1

ε

{∫ 1

0

1
y − x − 1

dy

}
dx.

Improper integrals



Download free books at BookBooN.com

Real Functions in Several Variables

96 
 

We calculate the inner integral,∫ 1

0

1
y − x − 1

dy = [ln |y − x − 1| ]10 = ln | − x| − ln | − x − 1| = lnx − ln(x + 1).

Then insert the result followed by a partial integration,

I(ε) =
∫ 1

ε

{1 · lnx − 1 · ln(x + 1)} dx

= [x lnx]1ε −
∫ 1

ε

x · 1
x

dx − [(x + 1) ln(x + 1)]1ε +
∫ 1

ε

(x + 1) · 1
x + 1

dx.

The clever trick is here to choose
∫

dx = x in the first partial integration, and
∫

dx = x + 1 in the
second one. In fact, the antiderivatives are only determined modulo a constant. By this trick we
get

I(ε) = 1 · ln 1 − ε ln ε − 2 ln 2 + (1 + ε) ln(1 + ε)
= −2 ln 2 − ε · ln ε = (1 + ε) ln(1 + ε).

Since area B \ B(ε) = ε → 0 for ε → 0+, this is the right limit. It follows from the magnitude of
functions that

ε ln ε → 0 for ε → 0+,

and since

(1 + ε) · ln(1 + ε) → 1 · ln 1 = 0 for ε → 0+,

we conclude that

I = lim
ε→0+

I(ε)

= −2 ln 2 − lim
ε→0+

ε · ln ε + lim
ε→0+

(1 + ε) · ln(1 + ε)

= −2 ln 2,

i.e. the improper integral is convergent and its value is

I =
∫

B

1
y − x − 1

dS = −2 ln 2 < 0.

C. A very weak control. The integrand is negative, where it is defined. Hence the result should also
be negative, which is seen to be true. (Note that this is only catching errors, where we end up
with a positive result. Negative wrong results cannot be traced in this way). ♦

Improper integrals



Download free books at BookBooN.com

Real Functions in Several Variables

97 
 

Example 8.2

A. Let F be the half-sphere F in the upper half plane of radius a > 0, i.e. in spherical coordinates,

r = a, 0 ≤ θ ≤ π

2
, 0 ≤ ϕ ≤ 2π.

Examine whether the improper surface integral

I =
∫
F

1
z

dS

is convergent.

0

0.5

1

–1

–0.5

0.5

1

–1

–0.5

0.5

1

Figure 60: The surface F for a = 1.
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D. Surface integrals can also be improper!

In the formulation of the task there is a hint of using spherical coordinates; though there exist also
quite reasonable variants of solutions in semi-polar and rectangular coordinates.

The points where the integrand is not defined lie on the circle

{(x, y, 0) | x2 + y2 = a2}

in the (x, y)-plane. Hence by the truncations we shall stay away from the (x, y)-plane. On the

residual part of the surface we see that the integrand
1
z

> 0, so no further division of the domain
is needed concerning the sign of the integrand.

I 1. Spherical coordinates. In this case we truncate F to F(ε) by

F(ε) : r = a, 0 ≤ θ ≤ π

2
− ε, 0 ≤ ϕ ≤ 2π, hvor 0 < ε <

π

2
.

A geometrical consideration gives that

area(F \ F(ε)) → 0 for ε → 0+,

and as mentioned in D. the integrand is positive, so we shall not divide the domain further.

By a reduction of the ordinary surface integral over F(ε) we get

I(ε) =
∫
F(ε)

1
z

dS =
∫ 2π

0

{∫ π
2 −ε

0

1
a cos θ

· a2 sin θ dθ

}
dϕ

= a · 2π
∫ π

2 −ε

0

1
cos θ

· sin θ dθ = 2πa [− ln cos θ]
π
2 −ε
0

= 2πa
{

ln cos 0 − ln cos
(π

2
− ε
)}

= −2πa ln
{

cos
π

2
· cos ε + sin

π

2
· sin ε

}
= −2πa ln{0 + sin ε} = −2πa ln sin ε.

Since sin ε → 0+ for ε → 0+, we have ln sin ε → −∞ for ε → 0+, i.e. I(ε) → −(−∞) = +∞ for
ε → 0+, and the improper surface integral is divergent.

I 2. Semi-polar coordinates. Here the surface is described by

F : 0 ≤ z ≤ a and � =
√

a2 − z2,

i.e. �2 + z2 = a2, � ≥ 0.
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The surface is truncated in the following way,

F(ε) : ε ≤ z ≤ a, � =
√

a2 − z2, where 0 < ε < a,

and it follows geometrically that area (F \ F(ε)) → 0 for ε → 0+.

The surface integral over F(ε) is reduced in the following

I(ε) =
∫
F(ε)

1
z

dS =
∫ a

ε

1
z

{∫
B(z)

ds

}
dz =

∫ a

ε

1
z

length{B(z)} dz,

because F(ε) is cut at height z ∈ [ε, a] in a circle B(z) of radius � =
√

a2 − z2, such that the inner
integral is the length of B(z), i.e.

2π � = 2π
√

a2 − z2.

Then we get by insertion

I(ε) = 2π
∫ a

ε

1
z

√
a2 − z2 dz.

When z is small, then
√

a2 − z2 ≈ a, hence the integrand is ≈ a

z
. According to Calculus 1 this

function cannot be integrated from 0, so this gives a hint that we may have divergence. Let us
prove this.

The integrand is positive everywhere. If 0 < z ≤
√

3
2

a, then

√
a2 − z2 ≥

√
a2 − 3

4
a2 =

a

2
.

We then have for 0 < ε <

√
3

2
a the following estimates

I(ε) = 2π
∫ a

ε

1
z

√
a2 − z2 dz ≥ 2π

∫ √
3

2 a

ε

1
z

√
a2 − z2 dz

≥ 2π
∫ √

3
2 a

ε

a

2
· 1
z

dz = πa

∫ √
3

2 a

ε

dz

z

= π a [ln z]
√

3
2 a

ε = πa

{
ln

(√
3

2
a

)
− ln ε

}
→ +∞ for ε → ∞,

and we conclude that the improper surface integral is divergent.
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I 3. Rectangular coordinates. In this case we consider F as the graph of the function

z = f(x, y) =
√

a2 − x2 − y2, (x, y) ∈ E,

where the parametric domain is

E = {(x, y) | x2 + y2 ≤ a2}.

The natural truncation of the domain is here

Eε = {(x, y) | x2 + y2 ≤ (a − ε)2}, 0 < ε < a,

and it is obvious that area(E \ Eε) → 0 for ε → 0+.

The weight function is in the case of a graph given by

√
1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

=

√√√√1 +

(
x√

a2 − x2 − y2

)2

+

(
y√

a2 − x2 − y2

)2

=
a√

a2 − x2 − y2
.
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Then we get by the reduction formula,

I(ε) =
∫
F(ε)

1
z

dS =
∫

Eε

1√
a2 − x2 − y2

· a√
a2 − x2 − y2

dx dy

= a

∫
Eε

1
a2 − x2 − y2

dx dy = a

∫ 2π

0

{∫ a−ε

0

1
a2 − �2

· � d�

}
dϕ

= a · 2π
∫ (a−ε)2

0

1
a2 − t

· 1
2

dt = π a
[− ln |(a2 − t)| ](a−ε)2

0

= π a
{
ln a2 − ln{a2 − (a − ε)2

}
= π a {2 ln a − ln{(2a − ε)ε}}
= 2π a ln a − π a ln(2a − ε) − π a ln ε

→ 2π a ln a − π a ln 2a − (−∞) = +∞ for ε → 0+,

and we conclude again that the improper surface integral is divergent.

Remark 8.1 In this case we could use all the three classical coordinate systems. Note that the three
proofs are totally different in their arguments. ♦

Example 8.3

A. Let B be the disc given by x2 + y2 ≤ a2. Find all values of α ∈ R, for which the (proper or
improper) plane integral

J(α) =
∫

B

(a2 − y2 − x2)α dS

is convergent. In case of convergence, find its value.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 61: The disc B and the truncation B(p) for a = 1.
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This example is of the same type as

∫ a

0

tα dt =

⎧⎪⎨
⎪⎩

1
α + 1

aα+1 for α > −1,

divergent for α ≤ −1,

and

∫ +∞

a

tα dt =

⎧⎪⎨
⎪⎩

divergent for α ≥ −1,

1
|α + 1| ·

1
a|α+1| for α < −1,

known from Calculus 1.

D. Dimensional considerations are here extremely useful. In fact, x, y ∼ a and
∫

B
· · · dS ∼ a2, hence

J(α) ∼ a2α · a2 = a2(α+1).

In order to get convergence we must have

a2(α+1) → 0 for a → 0+,

i.e. α + 1 > 1, or α > −1. Since

a2(α+1) → +∞ for a → 0+, n̊ar α < −1,

we may expect divergence in this case. (Roughly speaking: The integral of a positive term tends
to +∞, when the domain is shrunk. This is only possible, when we start with the value +∞, i.e.
with divergence).

The integral is proper, when α ≥ 0, and it is improper when α < 0. When the integrand is defined,
it is positive, so we shall not bother with an extra division of the domain according to the positive
and negative part of the integrand.

If α < 0, then the integrand is not defined on the boundary (the circle) x2 + y2 = a2.

The considerations above indicate that the value α = −1 divides convergence and divergence. For
that reason we start by first examining this case.

I. When we truncate, it is of no importance whether the integral is proper or improper. Since the
integrand is positive (of fixed sign) we shall not make any further division of the domain. We
truncate by the definition

B(p) = {(x, y) | x2 + y2 ≤ (p a)2}, 0 < p < 1,

and we note that at area{B \ B(p)} → 0 for p → 1−.
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1) If α = −1, we get by using polar coordinates in B(p) that

J(−1; p) =
∫

B(p)

1
a2 − x2 − y2

dS =
∫ 2π

0

{∫ p a

0

1
a2 − �2

· � d�

}
dϕ

= 2π
∫ (p a)2

0

1
a2 − t2

· 1
2

dt = π
[− ln |a2 − t‖ ](p a)2

0

= π
{
ln a2 − ln

(
a2 − p2a2

)}
= π ln

{
a2

a2(1 − p2)

}

= π ln
(

1
1 − p2

)
→ +∞ for p → −1.

We therefore conclude that

J(−1) =
∫

B

dS

a2 − x2 − y2
= lim

p→1−
J(−1; p) = +∞,

is divergent.
2) If α < −1, i.e. α + 1 < 0, then we can use 1) in the following rearrangements and estimates,(

a2 − x2 − y2
)α

=
(
a2 − x2 − y2

)α+1 · 1
a2 − x2 − y2

= a2(α+1) ·
{

1 − x2 + y2

a2

}α+1

· 1
a2 − x2 − y2

= a2(α+1) · 1{
1 − x2 + y2

a2

}|α+1| ·
1

a2 − x2 − y2

≥ a2(α+1) · 1
a2 − x2 − y2

,

b
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because{
1 − x2 + y2

a2

}|α+1|
≤ 1.

Then it follows from 1) that

J(α; p) =
∫

B(p)

(
a2 − x2 − y2

)α
dS ≥ a2(α+1)

∫
B(p)

1
a2 − x2 − y2

dS

= a2(α+1) J(−1; p) → +∞ for p → 1−,

i.e. J(α; p) → +∞ for p → 1−, and we have got divergence for α < −1, and thus all together
for α ≤ −1.

3) If α > −1, i.e. α + 1 > 0, we get by using polar coordinates in B(p) that

J(α; p) =
∫

B(p)

(
a2 − x2 − y2

)α
dS =< int2π

0

{∫ p a

0

(
a2 − �2

)α · � d�

}
dϕ

= 2π
∫ a2(1−p2)

a2
tα ·
(
−1

2

)
dt = π

[
− 1

α + 1
tα+1

]a2(1−p2)

a2

=
π

α

{
a2(α+1) − a2(α+1) · (1 − p2

)α+1
}

=
π

α + 1
a2(α+1)

{
1 − (1 − p2

)α+1
}

.

Since α + 1 > 0 and 1 − p2 → 0+ for p → 1−, it follows that(
1 − p2

)α+1 → 0 for p → 1 − .

Hence the integral is convergent for α > −1 with the value

J(α) =
∫

B

(
a2 − x2 − y2

)α
dS =

π

α + 1
a2(α+1).

Summing up we have proved that

J(α) =
∫

B

(
a2 − x2 − y2

)α
dS =

{ π

α + 1
a2(α+1) for α > −1; convergence;

∞ for α ≤ −1; divergence.

When the integrand has fixed sign, we allow ourselves to put the value equal to +∞ (positive
integrand) or −∞ (negative integrand).

However, we shall not allow this notation, if both the positive part and the negative part are
infinite, because ∞−∞ does not make sense. We shall return to this in Example 8.5. ♦

Example 8.4

A. In advanced technical literature one often sees the improper 1-dimensional integral∫ ∞

0

e−x2
dx.

Obvious applications can be found in Probability and Statistics (the normal distribution); but one
can also find it in many other places (the heat equation, diffusion). Find the value of this important
integral.
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D. The integral cannot be calculated by methods from Calculus 1. It is fairly easy to prove that it is
convergent. In fact, if we introduce the function

f(t) = (1 + t)e−t with f ′(t) = −t e−t < 0 for t > 0,

it follows that because f(t) is decreasing for t > 0 we have

(1 + t) e−t ≤ f(0) = 1, i.e. e−t ≤ 1
1 + t

for t ≥ 0.

If we put t = x2, we get

e−x2 ≤ 1
1 + x2

,

hence

0 <

∫ n

0

e−x2
dx ≤

∫ n

0

dx

1 + x2
= Arctan n → π

2
for n → +∞.

This proves the convergence, and even the estimate

(0 ≤)
∫ ∞

0

e−x2
dx ≤ π

2
.

However, we still have not found the exact value.

It is now possible to find the value by using methods from Calculus 2. The trick is to consider the
improper plane integral

I =
∫

B

exp(−x2 − y2) dS, where B = [0,+∞[2 is the first quadrant.

The integrand is defined and positive everywhere, so we shall not make any further division of the
domain according to the sign of the integrand.

The domain of integration is unbounded, so we must truncate it in a bounded way. We have
two obvious possibilities of doing this, depending on whether we consider polar or rectangular
coordinates. The idea is to use both of them, because we by using the polar coordinates obtain
the value of the integral I, and by using the rectangular coordinates we obtain the connection to
the integral under consideration.
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Figure 62: The domain Q(R) for R = 1.
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1) Polar coordinates. We truncate by taking the intersection of B and discs of radius R,

Q(R) = {(x, y) | x ≥ 0, y ≥ 0, x2 + y2 ≤ R2}.
We reach every point in the first quadrant B by taking the limit R → +∞.

When we apply the reduction theorem in polar coordinates over Q(R) we get

I(R) =
∫

Q(R)

exp
(−x2 − y2

)
dS =

∫ π
2

0

{∫ R

0

exp
(−�2

)
� d�

}
dϕ

=
π

2

∫ R2

0

e−t · 1
2

dt =
π

4
[
e−t
]R2

0
=

π

4
{
1 − exp

(−R2
)}

.

Since exp
(−R2

)→ 0 for R → +∞, we conclude that the improper integral is convergent with
the value

I =
∫

B

exp
(−x2 − y2

)
dS = lim

R→∞
I(R) =

π

4
.
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Figure 63: The domain R(n) for n = 1.

2) Rectangular coordinates. The truncation is here

R(n) = {(x, y) | 0 ≤ x ≤ n, 0 ≤ y ≤ n} = [0, n]2.

We get every point in the first quadrant B by taking the limit n → +∞.

When we apply the rectangular reduction theorem over R(n) we get

J(n) =
∫

R(n)

exp
(−x2 − y2

)
dS =

∫ n

0

{∫ n

0

e−x2 · e−y2
dx

}
dy

=
∫ n

0

e−x2
dx ·
∫ n

0

e−y2
dy =

{∫ n

0

e−t2 dt

}2

.

3) Summary. According to 1) the improper integral is convergent, hence the limit can be taken
in 2). Since the limit is the same, no matter which truncation we are using, we must have

I =
π

4
=
∫

B

exp
(−x2 − y2

)
dS = lim

n→∞ J(n) =
{∫ ∞

0

e−t2 dt

}2

.

Since
∫∞
0

e−t2 dt > 0, we finally get the value of the integral∫ ∞

0

e−t2 dt =
√

π

2
.

Remark 8.2 It follows that

I =
√

π

2
≤ π

2
,

cf. a remark in section D. ♦
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Example 8.5

A. Examine whether the improper plane integral∫
R2

xy

(1 + x2)(1 + y2)
dS

is convergent or divergent.

D. An analysis of the sign shows that the integrand is positive in the first and the third quadrant,
while it is negative in the second and the fourth quadrant, so we shall also divide the domain
according to the sign. Here we shall also demonstrate the wrong argument where one forgets to
divide according to the sign of the integrand. This shows that one has to be careful here.

I. We see that the integrand changes its sign if we reflect it in either the x-axis or in the y-axis. This
shows that the integral over any bounded set B, which is symmetric with respect to at least one
of the axes, is 0,∫

B

xy

(1 + x2)(1 + y2)
dS = 0.

The usual truncations in Calculus 2 (discs or centred squares) satisfy this symmetry with respect
to both axes, so if one is not too careful one will erroneously conclude in the limit that the plane
integral is “convergent with the value limn→∞ 0 = 0”.

We shall not prove that this conclusion is not correct. We choose this time the truncation

B(n) = [0, n] × [0, n],

0
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Figure 64: The truncation B(n) for n = 1.

i.e. we only consider a subset of the set, where the integrand is ≥ 0. If something goes wrong here
in the first quadrant, then it also is wrong in any bigger subset of [0, n]2 ∪ [−n, 0]2.

By reduction over B(n) we get

∫
B(n)

xy

(1 + x2)(1 + y2)
dS =

∫ n

0

{∫ n

0

xy

(1 + x2)(1 + y2)
dx

}
dy

=
∫ n

0

x

1 + x2
dx ·
∫ n

0

y

1 + y2
dy =

{∫ n

0

t

1 + t2
dt

}2

=
{[

1
2

ln
(
1 + x2

)]n
0

}2

=
1
4
{
ln
(
1 + n2

)}2
→ +∞ for n → ∞.
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This shows that the improper integral is divergent, thus our first argument must be wrong! (Of
the type ∞−∞).

Remark 8.3 We shall demonstrate how wrong this illegal method is. If we choose the “skew”
truncation

Q(a, n) = [−an, n] × [−an, n], a > 0 constant,

we still get R
2 by taking the limit n → +∞. We get by a rectangular reduction,

∫
Q(a,n)

xy

(1 + x2)(1 + y2)
dS =

{∫ n

−an

t

1 + t2
dt

}
=

{[
1
2

ln
(
1 + t2

)]n
−an

}2

=
{

1
2

ln
(

1 + n2

1 + a2n2

)}2

=

⎧⎪⎨
⎪⎩

1
2

ln

⎛
⎜⎝ 1 +

1
n2

a2 +
1
n2

⎞
⎟⎠
⎫⎪⎬
⎪⎭

2

→ {ln a}2 for n → ∞.

Improper integrals
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Every calculation is correct. The only thing which is wrong is that the assumptions of taking the
limit (with respect to the conclusion of convergence) are not satisfied. We note that {ln a}2 go
through the whole interval [0,+∞[, when a go through R+, which means that we can obtain any
q ≥ 0 as a candidate for a limit of the improper plane integral, which is nonsense.

If we instead use the truncations

R(a, n) = [−n, an] × [−an, n], a > 0 konstant,

we obtain analogously all negative numbers as possible limits. But if the limit exists, then it is
unique! Hence the improper plane integral is divergent. ♦
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9 Vector analysis

9.1 Tangential line integral; gradient field

Example 9.1

A. Given the vector field

V(x, y, z) =
(
y2 + z, 2xy + 2yz2, 2y2z + x

)
, (x, y, z) ∈ R

3.

Examine whether V(x, y, z) has an antiderivative. If this is the case, indicate all antiderivatives.

D. Problems of this type can be solved in many ways. One may assume that

1) No antiderivative exists. In this case we have two possibilities of proving this claim:

a) Find a pair of indices (i, j), such that

∂Vi

∂xj
�= ∂Vj

∂xi
.

If we can do this, then the necessary condition for an antiderivative is not fulfilled, so there
is no antiderivative.

b) Find a closed curve C, such that the circulation∮
C
V · dx �= 0.

Then it follows from the theorem of circulation that no antiderivative exists.

2) An antiderivative exists. Here we have got four methods:

a) Inspection. This method is very elegant, but one should have a lot of experience before one
can rely on it. A final check of the solution is recommended, though it is not mandatory.

b) Indefinite integration. In this case the check of the solution is build into the method.
c) Integration a curve consisting of axis parallel lines. The standard method. It has the

drawback that one must not forget to check the solution afterwards.
d) Radial integration. This method is very difficult to perform, because it invites to errors of

calculation! The reader is strongly dissuaded to use it for the same reason. Also in this
case the final check is mandatory.

In the explicit example we first believe that antiderivatives exist. We shall only apply the first
three of the possible methods of solution.

I. We shall in all variants start by calculating

(13) V · dx = (y2 + z) dx + (2xy + 2yz2) dy + (2y2z + x) dz.

I 1. Inspection.

Calculate (13) in all details and then start to put as much as possible under the d-sign by using
the rule of calculation

F ′(t) dt = dF (t).
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Then one should pair all terms which look alike and then use some other of the well-known rules
of calculations for differentials, like e.g.

f dg + g df = d(f g) and
1
g

df − f

g2
dg = d

(
f

g

)
.

If we in this way can rewrite (13) into

V · dx = dF (x, y, z) = �F · dx,

then F (x, y, z) is an antiderivative of V, and V is a gradient field, V = �F .

In the specific case we get

V · dx = y2 dx + z dx + 2xy dy + 2yz2dy + 2y2z dz + x dz

= y2 dx + z dx + x d(y2) + z2 d(y2) + y2 d(z2) + x dz

= {z dx + x dz} + {y2 dx + x d(y2)} + {z2 d(y2) + y2 d(z2)}
= d(xz) + d(xy2) + d(y2z2)
= d

(
xy2 + xz + y2z2

)
= dF (x, y, z).

Since we have put everything under the d-sign, we conclude that V is a gradient field, V = �F ,
and that the set of all antiderivatives is given by

F (x, y, z) = xy2 + xz + y2z2 + c,

where c ∈ R is an arbitrary constant.

Vector analysis
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I 2. Indefinite integration. Choose the simplest of the terms in (13). Here we pick up

(y2 + z) dx.

(Note that one must only choose one of the differentials dx, dy, dz).

By an indefinite integration of this we find a candidate for an antiderivative:

F1(x, y, z) =
∫

(y2 + z) dx = (y2 + z)x.

Then check, whether we have already hit the bull’s eye:

dF1 =
∂F1

∂x
dx +

∂F1

∂y
dy +

∂F1

∂z
dz = (y2 + z) dx + 2yx dy + x dz.

We did not do it this time, but we see that

V · dx − dF1 = 2yz2 dy + 2y2z dz,

where x (which was the variable of integration in the construction of F1(x, y, z)) has totally disap-
peared from the right hand side. If this is not the case, we only have two possibilities:

1) We have made an error in our calculations!

2) There is no error in our calculations, so we conclude that there exists no antiderivative, and V
is not a gradient field.

If one ends up in this situation, one should obviously check the calculations carefully, before one
jumps to any conclusion.

Choose one of the terms in the reduced form V · dx − dF1, and integrate e.g.

F2(y, z) =
∫

2yz2 dy = z2

∫
2y dy = y2z2.

Then check the solution once more:

dF2 =
∂F2

∂y
dy +

∂F2

∂z
dz

= 2yz2 dy + 2y2z dz = V · dx − dF1.

This time we hit the bull’s eye! Thus we get by a rearrangement

V · dx = dF1 + dF2 = d
(
xy2 + xz + y2z2

)
.

All antiderivatives are therefore given in the form

F (x, y, z) = xy2 + xz + y2z2 + c,
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where c is an arbitrary constant.
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Figure 65: An example of a curve consisting of axis parallel lines, starting from (0, 0, 0).

I 3. Integration along a curve consisting of axis parallel lines. Whenever possible one integrates along
the curve defined by

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z),

with some necessary modifications, if this curve does not lie inside the domain of the integrand.

Parametric representation:

Γ1 : r1(t) = (t, 0, 0), dx = (dt, 0, 0), t between 0 and x,
Γ2 : r2(t) = (x, t), dx = (0, dt, 0), t between 0 and y,
Γ3 : r3(t) = (x, y, t), dx = (0, 0, dt), t between 0 and z.

Note that we write “t between 0 and x”, and not “t ∈ [0, x]”, because the latter is only correct
when x ≥ 0. If instead x < 0, then t ∈ [x, 0]. Analogously in the other cases.

From (13), i.e.

V · dx = (y2 + z) dx + (2xy + 2yz2) dy + (2y2z + x) dz,

we get the line integral, and thus a candidate,

F (x, y, z) =
∫

Γ1

V · dx +
∫

Γ2

V · dx +
∫

Γ3

V · dx

=
∫ x

0

(02 + 02) dt +
∫ y

0

(2xt + 2t · 02) dt +
∫ z

0

(2y2t + x) dt

= 0 + xy2 + y2z2 + xz.

Therefore a candidate of an antiderivative is

F (x, y, z) = xy2 + xz + y2z2.
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This does not mean that we hereby already have proved that F (x, y, z) is an antiderivative! The
check of the solution is here mandatory, i.e. we shall check the equation �F = V. In this case
under consideration we get

�F =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=
(
y2 + z, 2xy + 2yz2, 2y2z + x

)
= V(x, y, z).

Thus we have proved, that F is an antiderivative.

Then we get all possible antiderivatives by adding an arbitrary constant c ∈ R:

F (x, y, z) = xy2 + xz + y2z2 + c.

Remark 9.1 The check is built into the first two methods, while the third does not contain this
test. The problem is that an integration along a curve of the described type will always produce a
candidate, even in cases where V is not a gradient field. This failure of the method can only be found
by a mandatory check.

Note that if one always checks the result no matter the choice of method, then it is waste of time also
to check the additional necessary conditions,

∂Vi

∂xj
=

∂Vj

∂xi
, for every pair of indices (i, j).

One can simply do without this often quite long examination. ♦
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Example 9.2

A Given the vector field

V(x, y) = (Vx(x, y), Vy(x, y)) =

(
x√

x2 + y2
,

y√
x2 + y2

)
, (x, y) �= (0, 0).

Examine whether V(x, y) is a gradient field. If this is the case, find all antiderivatives.

D The domain R
2 \ {(0, 0)} has a “hole”, thus it is not simply connected, and the usual sufficient

condition is not fulfilled. We guess that there exists an antiderivative. We shall try all three
recommended methods (and we leave out again the radial integration).

I 1. Inspection. By using the rules of calculations we get

V · dx =
x√

x2 + y2
dx +

y√
x2 + y2

dy =
1√

x2 + y2
{x dx + y dy}

=
1
2

1√
x2 + y2

d
(
x2 + y2

)
= d
(√

x2 + y2
)

,

from which we conclude that V is a gradient field and that all antiderivatives for V are given by

F (x, y) =
√

x2 + y2 + c, (x, y) �= (0, 0), c arbitrary constant.

I 2. Indefinite integration. If we choose the first term in V·dx as our integrand, we find a candidate

F1(x, y) =
∫

x√
x2 + y2

dx =
√

x2 + y2, for (x, y) �= (0, 0).

By the check we get

�F1 =

(
x√

x2 + y2
,

y√
x2 + y2

)
= V,

so even our first guess was correct.

Hence, F1(x, y) =
√

x2 + y2 is an antiderivative, and V is a gradient field.

Every antiderivative is of the form

F (x, y) =
√

x2 + y2 + c, (x, y) �= (0, 0), c arbitrary constant.

0

0.5

1

1.5

2

y

1 2 3 4

x

Figure 66: The broken line of integration from (1, 0) to (x, y) in the open right half-plane.
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I 3. Integration along a broken line. Since (0, 0) does not lie in the domain, we choose instead
as the path of integration

(1, 0) −→ (x, 0) −→ (x, y).

We see that every point in the right half-plane x > 0 can be reached in this way, while no point
in the left half-plan x ≤ 0 can be reached in this way. Therefore, we are formally only working in
the right half-plane. There are apparently problems here, but we shall nevertheless continue our
calculations in order to see if we can obtain a reasonable guess. At least we can find the candidate

for x > 0,

F1(x, y) =
∫ x

1

Vx(t, 0) dt +
∫ y

0

Vy(x, t) dt

=
∫ x

1

t√
t2 + 02

dt +
∫ y

0

t√
x2 + t2

dt

= [t]x1 +
[√

x2 + t2
]y
0

= (x − 1) +
(√

x2 + y2 −
√

x2 + 02
)

=
√

x2 + y2 − 1, because
√

x2 = x for x > 0.

Even if the candidate was only derived in the half-plane x > 0, we see that this candidate F1(x, y)
is of class C1 in R

2 \ {(0, 0)}, so the following mandatory check is valid in the whole domain:

�F1 =

(
x√

x2 + y2
,

y√
x2 + y2

)
= V(x, y), for (x, y) �= (0, 0).

Let us recapitulate this very important argument: The candidate is only found in a subset of the
domain, but it is easily seen that the expression is defined in the whole of the domain! By checking
the candidate we prove that we have thus found a solution in the whole domain, and no further
calculation is needed.

We get every antiderivative by adding an arbitrary constant,

F (x, y) =
√

x2 + y2 + c, (x, y) �= (0, 0), c arbitrary constant. ♦
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9.2 Flux and divergence of a vector field; Gauß’s theorem

Example 9.3

A Find the flux Φ1 of the vector field

V(x, y, z) = (yz,−xz, x2 + y2), (x, y, z) ∈ R
3,

through the surface F given by

r(u, v) = (u sin v, u cosv, uv), 0 ≤ u ≤ 1, 0 ≤ v ≤ u.

D By using the reduction theorem∫
F

V · n dS =
∫

E

V(r(u, v)) · N(u, v) du dv,

where an abstract surfaceintegral is reduced to an abstract planeintegral, it follows that we shall

1) identify the parametric domain E,

2) find the normal vector N(u, v) for the surface F in the given parametric representation,

3) find V(r(u, v)) on the surface as a function in the new variables (u, v).
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Figure 67: The surface F .
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Figure 68: The parametric domain E.

I. 1) The parametric domain is

E = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u}.

2) Next we shall find the normal vector of the surface in the given parametric representation.
(Note that we still do not consider the vector field itself). Since the tangent vectors of the
coordinate curves are

∂r
∂u

= (sin v, cos v, 0) and
∂r
∂v

= u (cos v,− sin v, 1),

the corresponding normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

= u

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

sin v cos v v

cos v − sin v 1

∣∣∣∣∣∣∣∣∣∣
= u (cos v + v sin v, v cos v − sin v,−1).
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3) The vector field V(x, y, z) is defined in the whole of R
3. Its restriction to the surface F is

expressed in the new variables (u, v)

V(x, y, z) = (yz,−xz, x2 + y2)
= (u cos v · uv,−u sin v · uv, (u sin2 v)2 + (u cos2)2)
= (u2v cos v,−u2v sin v, u2) = u2 (v cos v,−v sin v, 1).

After these opening manoeuvres continue with

4) Calculation of the integrand expressed by (u, v) (apply 2 and 3 above):

V(r(u, v)) · N(u, v)
= u2 (v cos v,−v sin v, 1) · u(cos v + v sin v, v cos v − sin v,−1)
= u3 {v cos v(cos v + v sin v) − v sin v(v cos v − sin v) − 1}
= u3

{
v
(
cos2 v + v cos v sin v − v cos v sin v + sin2 v

)− 1
}

= u3(v − 1).

5) Calculation of the flux (apply 1 and 4):

Φ1 =
∫
F

V · n dS =
∫

E

V(r(u, v)) · N(u, v) du dv

=
∫

E

u3(v − 1) du dv =
∫ 1

0

u3

{∫ u

0

(v − 1) dv

}
du

=
∫ 1

0

u3

[
1
2

v2 − v

]u
0

du =
∫ 1

0

u3

(
1
2

u2 − u

)
du

=
∫ 1

0

(
1
2

u5 − u4

)
du =

[
1
2
· 1
6

u6 − 1
5

u5

]1
0

=
1
12

− 1
5

= − 7
60

. ♦

Example 9.4

A. Find the flux Φ2 of the vector field

V(x, y, z) =
(
x2 + y2, z2, y2

)
, (x, y, z) ∈ R

3,

through the surface F defined by

r(u, v) = (u + v, u − v, u + 2v), u2 + v2 ≤ 4.

–4

–2

2

4

–2

–1

1

2

–2
–1

1
2

Figure 69: The surface F and its projection onto the (x, y)-plane.

Vector analysis



Download free books at BookBooN.com

Real Functions in Several Variables

121 
 

D. We see that the surface F lies in a plane, but because this plane is oblique, it is very difficult to
exploit its flat structure. Instead we analyze the reduction formula∫

F
V · n dS =

∫
E

V(r(u, v)) · N(u, v) du dv,

where the abstract surface integral is rewritten as an abstract plane integral. By inspecting the
right hand side it is seen that we shall

Vector analysis

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346343/121


Download free books at BookBooN.com

Real Functions in Several Variables

122 
 

1) identify the parametric domain E,

2) find the normal vector N(u, v) for the surface F , corresponding to the parameters (u, v),

3) express V(r(u, v)) on the surface F as a function in the parameters (u, v).

–2

–1

0

1

2

–2 –1 1 2

Figure 70: The parametric domain E is a disc of centre (0, 0) and radius 2.

I. 1) The parametric domain is the disc of centre (0, 0) and radius 2,

E = {(u, v) | u2 + v2 ≤ 4 = 22}.

2) The normal vector. It follows from the parametric representation of the surface that

∂r
∂u

= (1, 1, 1) and
∂r
∂v

= (1,−1, 2).

Thus the normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣
e1 e2 e3

1 1 1
1 −1 2

∣∣∣∣∣∣ = (3,−1,−2).

3) The restriction of the vector field to the surface is now given by

V(x, y, z) =
(
x2, y2, z2

)
=
(
(u + v)2 + (u − v)2, (y + 2v)2, (u − v)2

)
=
(
2
(
u2 + v2

)
, (u + 2v)2, (u − v)2

)
.

4) The integrand is according to 2 and 3,

V · N = (3,−1,−2) · (2 (u2 + v2
)
, (u + 2v)2, (u − v)2

)
= 6

(
u2 + v2

)− (u + 2v)2 − 2(u − v)2

= 6u2 + 6v2 − (u2 + 4uv + 4v2
)− (2u2 − 4uv + 2v2

)
= 3u2.
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5) By insertion of 4 in the reduction formula we get by also using 1,

Φ2 =
∫
F

V · n dS =
∫

E

V(r(u, v)) · N(u, v) du dv

= 3
∫

E

u2 du dv.

Since the parametric domain E is a disc, it is easiest to reduce it in polar coordinates,

u = � cos ϕ, v = � sinϕ, 0 ≤ � ≤ 2, 0 ≤ ϕ ≤ 2π.

Hence we get the result

Φ2 = 3
∫

E

u2 du dv = 3
∫ 2π

0

{∫ 2

0

�2 cos2 ϕ · � d�

}
dϕ

= 3
∫ 2π

0

cos2 ϕdϕ ·
∫ 2

0

�3 d� = 3 · π ·
[
1
4

�4

]2
0

= 12π. ♦
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Example 9.5

A. Let a, b, c > 0, be constants, and let

V(x, y, z) = (y, x, z + c), (x, y, z) ∈ R
3.

Find the flux Φ3 of V through the half ellipsoidal surface

F1 =
{

(x, y, z)
∣∣∣∣ (x

a

)2
+
(y

b

)2
+
(z

c

)2
= 1, z ≥ 0

}

where the normal is directed u upwards, n · ez ≥ 0, and the flux Φ4 of V through the projection F2

of F1 onto the (x, y)-plane,

F2 =
{

(x, y, z)
∣∣∣∣ (x

a

)2
+
(y

b

)2
≤ 1
}

, n = (0, 0, 1).

0

0.5

1

1.5

2

2.5

3

–2

–1

1

2

–1

1

Figure 71: The half ellipsoidal surface F1 for a = 1, b = 2 and c = 3. The surface F2 is hidden below
F1 in the (x, y)-plane.

D. Summing up we see that F1 and F2 surround a spatial domain Ω. The flux Φ3 represents e.g. the
energy which flows out of Ω through F1, and Φ4 represents the energy which flows into Ω through
F2. Hence, the difference Φ3 − Φ4 represents the energy which is created by V in Ω.

I 1. Consider first

F1 =
{

(x, y, z)
∣∣∣∣ (x

a

)2
+
(y

b

)2
+
(z

c

)2
= 1, z ≥ 0

}
, n · e3 ≥ 0.

The easiest method, which can be found in some textbooks, is to use spherical coordinates (left to
the reader). We shall here as an alternative apply rectangular coordinates instead. Then we can
consider F1 as the graph of the function

z = f(x, y) = c

√
1 −
(x

a

)2
−
(y

b

)2
,

(x

a

)2
+
(y

b

)2
≤ 1.
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Then the hidden parametric representation is given by

r(x, y) =

(
x, y, c

√
1 −
(x

a

)2
−
(y

b

)2)
,

(x

a

)2
+
(y

b

)2
≤ 1.

This parametric representation is differentiable when

(x

a

)2
+
(y

b

)2
< 1,

i.e. when z > 0. If so, we get

∂r
∂x

=

⎛
⎜⎜⎝1, 0,− c

a2

x√
1 −
(x

a

)2
−
(y

b

)2
⎞
⎟⎟⎠ =

(
1, 0,− c2

a2
· x

z

)
,

and analogously

∂r
∂y

=

⎛
⎜⎜⎝0, 1,− c

b2

y√
1 −
(x

a

)2
−
(y

b

)2
⎞
⎟⎟⎠ =

(
0, 1,−c2

b2
· y

z

)
,

where we have used that z = c

√
1 −
(x

a

)2
−
(y

b

)2
in order not to be overburdened with a square

root in the following. (It is always possible to substitute back again, if necessary). Then

N(x, y) =
∂r
∂x

× ∂r
∂y

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

1 0 − c2

a2

x

z

0 1 −c2

b2

y

z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(

c2

a2
· x

z
,
c2

b2
· y

z
, 1
)

.

Now N · e3 = 1 > 0, so N(x, y) is pointing in the right direction.

The integrand is then calculated,

V · N = (y, x, z + c) ·
(

c2

a2
· x

z
,
c2

b2
· y

z
, 1
)

= c2

(
1
a2

+
1
b2

)
xy

z
+ z + c.

The domain of integration is the ellipse in the (x, y)-plane

E =
{

(x, y)
∣∣∣∣ (x

a

)2
+
(y

b

)2
≤ 1
}

.
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Hence, the flux is equal to the improper plane integral

Φ3 =
∫
F1

V · n dS

=
∫

E

⎧⎪⎪⎨
⎪⎪⎩c

(
1
a2

+
1
b2

)
· xy√

1−
(x

a

)2
−
(y

b

)2 + c

√
1−
(x

a

)2
−
(y

b

)2
+ c

⎫⎪⎪⎬
⎪⎪⎭ dx dy.

Then notice that we have e.g.∫
x

√
1 −
(x

a

)2
−
(y

b

)2
dx = −a2

√
1 −
(x

a

)2
−
(y

b

)2
,

i.e. if we integrate over an interval of the form [0, k] (where the integrand is ≥ 0) or over [−k, 0]
(where the integrand is ≤ 0), then we get finite values in both cases, i.e. the improper integral is
convergent.

If we put k = a

√
1 −
(y

b

)2
, it follows of symmetric reasons that

∫
E

c

(
1
a2

+
1
b2

)
xy√

1 −
(x

a

)2
−
(y

b

)2 dS
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= lim
ε→0+

∫ b

−b

c

(
1
a2

+
1
b2

)
y

⎧⎪⎪⎨
⎪⎪⎩
∫ a

q
1−( y

b )2−ε

−a
q

1−( y
b )2

+ε

x dx√
1 −
(x

a

)2
−
(y

b

)2
⎫⎪⎪⎬
⎪⎪⎭

= lim
ε→0+

c

(
1
a2

+
1
b2

)∫ b

−b

y · 0 dy = 0.

The expression of the flux is therefore reduced to

Φ3 = 0 +
∫

E

(z + c) dx dy

=
∫

E

c

√
1 −
(x

a

)2
−
(y

b

)2
dx dy + c · area(E)

= c

∫
E

√
1 −
(x

a

)2
−
(y

b

)2
dx dy + c · πab.

The purpose of the following elaborated variant is to straighten up the ellipse by the change of
variables

u =
x

a
, v =

y

b
, dvs. x = a u, y = b v.

The corresponding Jacobian is

∂(x, y)
∂(u, v)

=
∣∣∣∣ a 0

0 b

∣∣∣∣ = ab > 0.

By the transformation formula the parametric domain E is mapped into the unit disc B in the
(u, v)-plane, hence

Φ3 = πabc + c

∫
E

√
1 −
(x

a

)2
−
(y

b

)2
dx dy

= πabc + c

∫
B

√
1 − u2 − v2

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv

= πabc + ab · c
∫

B

√
1 − u2 − v2 du dv

= abc

{
π +
∫ 2π

0

{∫ 1

0

√
1 − �2 · � d�

}
dϕ

}

= abc

{
π + 2π

∫ 1

0

√
1 − t · 1

2
dt

}

= πabc

{
1 +
[
−2

3
(1 − t)

3
2

]1
0

}

= πabc ·
(

1 +
2
3

)
=

5
3

πabc.

No matter whether one is using spherical or rectangular coordinates, it is very difficult to find
Φ3, and there are lots of pit holes (as seen above we get e.g. an improper surface integral in the
rectangular version).
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I 2. Next look at

F2 = E =
{

(x, y, z)
∣∣∣∣ (x

a

)2
+
(y

b

)2
≤ 1, z = 0

}
, n = (0, 0, 1).

The restriction of V to E is obtained by putting z = 0, i.e.

V(x, y, 0) = (y, x, c).

The unit normal vector is n = (0, 0, 1), so the integrand becomes

V(x, y, 0) · n = (y, x, c) · (0, 0, 1) = c.

We conclude by using the reduction theorem on the simple calculation

Φ4 =
∫

E

V · n dS = c

∫
E

dS = c · areal(E) = c · πab = πabc.

I 3. Finally we have (cf. the figure)

0

0.5

1

1.5

2

2.5

3

–2

–1

1

2

–1

1

Figure 72: The domain Ω.

The flux out of ∂Ω of V is according to I 1. and I 2. given by

Φ3 − Φ4 =
5
3

π abc − π abc =
2
3

π abc,

where we use −Φ4, because Φ4 indicates the flux into Ω through F2.

Let us now alternatively show the same result by means of Gauß’s theorem.

We first realize that F1 and F2 surround a spatial domain

Ω =
{

(x, y, z)
∣∣∣∣ (x

a

)2
+
(y

b

)2
+
(z

c

)2
≤ 1, z ≥ 0

}
.

From V(x, y, z) = (y, x, z + c) we then get

div V = 0 + 0 + 1 = 1.
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The flux out through ∂Ω (the normal of direction away from the domain) is then according to
Gauß’s theorem,

Φ =
∫

∂Ω

V · n dS =
∫

Ω

div V dΩ =
∫

Ω

dΩ = vol(Ω) =
1
2

(
4π
3

abc

)
=

2π
3

abc.

By comparison we see that this is exactly Φ3 − Φ3 as we claimed.

Summarizing, Φ3 in I 1. was difficult to compute, while Φ4 in I 2. and Φ in I 3. were easy. Since
Φ3 − Φ4 = Φ, we might have calculated Φ3 by computing the easy right hand side of

Φ3 = Φ4 + Φ,

i.e. expressed in integrals,

(14)
∫
F1

V · n dS =
∫
F2

V · n dS +
∫

Ω

div V dΩ,

or put in other words: an ugly surface integral (the left hand side) is expressed by the sum of a simple
surface integral (here even a plane integral) and a simple spatial integral (the right hand side).

This technique can often be applied when one shall calculate the flux through a more or less compli-
cated surface F1.
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1) First draw a figure, thereby realizing how F1 is placed in the space.

2) Then add a nice surface F2, such that F1 ∪F2 becomes the boundary of a spatial body Ω. Check
in particular that the normal vector on F2 is always pointing away from the domain Ω).

3) Calculate the right hand side of (14), thereby finding the flux through F1.

Remark 9.2 We shall later in Example 9.10 give some comments which will give us an even more
easy version of calculation. ♦

Example 9.6

A. Let the surface F be the square

F = {(x, y, z) | |x| ≤ a, |y| ≤ a, z = a}, a > 0,

at the height a with the unit normal vector n = (0, 0, 1) pointing upwards.

Find the flux through F of the Coulomb field

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
, (x, y, z) �= (0, 0, 0).

(Concerning the Coulomb field se also Example 9.10).

0

0.5
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0.5

1

–1

–0.5

0.5

1

Figure 73: The surface F for a = 1.

D. Using rectangular coordinates we get from the reduction theorem that

Φ5 =
∫
F

V · n dS =
∫ a

−a

{∫ a

−a

(x, y, a) · (0, 0, 1)

(x2 + y2 + a2)3/2
dx

}
dy

=
∫ a

−a

{
a

(x2 + y2 + a2)3/2
dx

}
dy = 4a

∫ a

0

{∫ a

0

1

(x2 + y2 + a2)3/2
dx

}
dy,

where we have used that the integrand is even in both x and y, and that the domain is symmetric.

So far, so good, but from now on the calculations become really tough. The reason is that the
integrand invites to the application of polar coordinates, while the domain is better described
in rectangular coordinates. The mixture of these two coordinate systems will always cause some
difficulties.
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For pedagogical reasons we shall here show both variants, first the rectangular version, which is
extremely difficult, and afterwards the polar version, which is “only” difficult. This exercise will
show that one cannot just restrict oneself to only learning the rectangular method!

I 1. Rectangular variant. Calculate directly

Φ5 = 4
∫ a

0

{∫ a

0

a

(x2 + y2 + a2)3/2
dx

}
dy.

First we note by a partial integration of auxiliary function that

∫ a

0

1 · (t2 + c2
)α

dt =
[
t · (t2 + c2

)α]a
0
−
∫ a

0

t · α (t2 + c2
)α−1 · 2t dt

= a
(
a2 + c2

)α − 2α
∫ a

0

(
t2 + c2 − c2

) (
t2 + c2

)α−1
dt

= a
(
a2 + c2

)α − 2α
∫ a

0

(
t2 + c2

)α
dt + 2αc2

∫ a

0

(
t2 + c2

)α−1
dt.

When α �= 0 and c > 0, we get by a rearrangement

(15)
∫ a

0

(
t2 + c2

)α−1
dt =

1 + 2α
2αc2

∫ a

0

(
t2 + c2

)α
dt − a

(
a2 + c2

)α
2αc2

.

Choosing t = x and α = −1
2

and c2 = y2 + a2 in (15) and multiplying by a, we get the inner
integral in Φ5: Since 1 + 2α = 0 we have

∫ a

0

a

(x2 + y2 + a2)3/2
dx = −a2

(
a2 + y2 + a2

)−1/2

2
(
−1

2

)
(a2 + y2)

=
a2

(y2 + a2)
√

y2 + 2a2
,

which gives by insertion

Φ5 = 4
∫ a

0

a2

(y2 + a2)
√

y2 + 2a2
dy.

So far we can still use the pocket calculator TI-89, but from now on it denies to calculate the exact
value! Therefore, we must from now on continue by using the old-fashioned, though well tested
methods from the time before the pocket calculators.

When we consider the dimensions we see that y ∼ a, hence a convenient substitution must be
y = a u. Then

Φ5 = 4
∫ a

0

a2

(y2 + a2)
√

y2 + 2a2
dy = 4

∫ 1

0

a2

(a2u2 + a2)
√

a2u2 + 2a2
· a du

= 4
∫ 1

0

1
(u2 + 1)

√
u2 + 2

du = 4
∫ 1

0

1
(u2 + 1)

√
(u2 + 1) + 1

du,

where it should be surprising that Φ5 is independent of a.

The following circumscription is governed by the following general principle:

• Whenever the square of two terms is involved then it should be rewritten as 1 plus/minus
something which has “something to do” with the other terms in the integrand.
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The circumscription indicates that we should try the monotonous substitution

t = u2 + 1, u =
√

t − 1, du =
1
2

1√
t − 1

dt, t ∈ [1, 2].

By this substitution we get

Φ5 = 4
∫ 1

0

1
(u2 + 1)

√
(u2 + 1) + 1

du = 4
∫ 2

1

1
t
√

t + 1
· 1
2

1√
t − 1

dt = 2
∫ 2

1

dt

t
√

t2 − 1
.

The structure
√

t2 − 1 looks like√
cosh2 w − 1 =

√
sinh2 w = | sinh w|,

which is a means to get rid of the square root. We therefore try another substitution,

t = coshw, w = ln(t +
√

t2 − 1), dt = sinhw dw, w ∈ [0, ln(2 +
√

3)].

Since we have sinhw ≥ 0 in this interval, we get

Φ5 = 2
∫ 2

1

dt

t
√

t2 − 1
= 2
∫ ln(2+

√
3)

0

sinhw

coshw · sinhw
dw

= 2
∫ ln(2+

√
3)

0

dw

cosh w
= 2
∫ ln(2+

√
3)

0

2
ew + e−w

dw

= 4
∫ ln(2+

√
3)

0

ew

1 + (ew)2
dw = 4 [Arctan (ew)]ln(2+

√
3)

0

= 4
{

Arctan(2 +
√

3)) − π

4

}
= 4Arctan(2 +

√
3) − π.

Our troubles in the rectangular case are not over. How can we find Arctan(2 +
√

3) without using
a pocket calculator?
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0

1

2

3

4
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0.20.40.60.8 1 1.2

x

Figure 74: The rectangular triangle with the opposite side = 2 +
√

3, so ϕ = Arctan(2 +
√

3) is the
nearby angle.

Geometrically ϕ = Arctan(2 +
√

3) is that angle in the rectangular triangle on the figure, which
is >

π

4
.

The hypothenuse can be found by Pythagoras’ theorem,

r2 = (2 +
√

3)2 + 12 = 4 + 3 + 4
√

3 + 1 = 8 + 4
√

3 = 4(2 +
√

3),

i.e. r = 2
√

2 +
√

3. From ϕ >
π

4
, follows that ψ =

π

2
− ϕ <

π

4
, and

cos ψ =
1
r

(2 +
√

3) =
1
2

√
2 +

√
3.

We shall get rid of the square root by squaring, so we try

cos 2ψ = 2 cos2 ψ − 1 = 2 · 1
4

(2 +
√

3) − 1 = 1 +
1
2

√
3 − 1 =

√
3

2
.

Since we have been so careful to show that 0 < ψ <
π

4
, it follows that 0 < 2ψ <

π

2
, hence

2ψ = Arccos

(√
3

2

)
=

π

6
, i.e. ψ =

π

12
.

Then

Arctan(2 +
√

3) = ϕ =
π

2
− ψ =

π

2
− π

12
=

5π
12

.

By a final insertion we get that the flux is

Φ5 = 4Arctan(2 +
√

3) − π = 4 · 5π
12

− π =
5π
3

− π =
2π
3

.

Remark 9.3 It is obvious why this variant is never seen in ordinary textbooks. The morale is
that even if something can be done, it does not always have to, and we should of course have
avoided this variant. It should, however, be added that the pocket calculator finally will find that

Arctan(2 +
√

3) =
5π
12

. ♦
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Figure 75: The domain T is the lower triangle and a = 1.

I 2. Polar variant. We shall start from the very beginning by

Φ5 = 4
∫ a

0

{∫ a

0

a

(x2 + y2 + a2)3/2
dx

}
dy.

The domain [0, n]2 is not fit for a polar description, but if we note that the integrand is symmetrical
about the line y = x, then this symmetry gives that

Φ5 = 2 · 4
∫

T

a

(x2 + y2 + a2)3/2
dx dy = 8

∫
T

a

(x2 + y2 + a2)3/2
dx dy,

where the triangle T is bounded by y = 0 in the right half-plane (corresponding in polar coordinates
to ϕ = 0), the line y = x (corresponding to ϕ =

π

4
) and x = � cos ϕ = a, i.e.

� =
a

cos ϕ
.

Therefore, a polar description of T is

T =
{

(�, ϕ)
∣∣∣∣ 0 ≤ ϕ ≤ π

4
, 0 ≤ � ≤ a

cos ϕ

}
.

Then the rest follows from the usual reduction theorems,

Φ5 = 8
∫

T

a

(x2 + y2 + a2)3/2
dS

= 8
∫ π

4

0

{∫ a
cos ϕ

0

a

(�2 + a2)3/2
· � d�

}
dϕ.

The inner integral is calculated by using the substitution

t = �, dt = 2� d�, i.e. � d� =
1
2

dt,
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hence

8
∫ a

cos ϕ

0

a

(�2 + a2)3/2
� d� = 4

∫ 4
cos2 ϕ

0

a

(t + a2)3/2
dt

= 4

[
− 2a

(t + a2)1/2

] a2

cos2 ϕ

= 8

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − a√
a2

cos2 ϕ
+ a2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 8

{
1 − a| cos ϕ|

a
√

1 + cos2 ϕ

}
= 8

{
1 − | cos ϕ|√

1 + cos2 ϕ

}
.

Since | cos ϕ| = cos ϕ for 0 ≤ ϕ ≤ π

4
, we get by an insertion and an application of the substitution

u = sinϕ, du = cos ϕdϕ, cos2 ϕ = 1 − sin2 ϕ = 1 − u2,

that
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Φ5 = 8
∫ π

4

0

{
1 − 1√

1 + cos2 ϕ
· cos ϕ

}
dϕ

= 8 · π

4
− 8
∫ 1√

2

0

du√
1 + (1 − u2)

= 2π − 8
∫ 1√

2

0

du√
2 − u2

= 2π − 8
∫ 1√

2

0

1√
1 −
(

u√
2

)2
· 1√

2
du = 2π − 8

∫ 1
2

0

dv√
1 − v2

= 2π − 8 [Arcsin v]
1
2
0 = 2π − 8 · π

6
=

2π
3

.

Remark 9.4 It should be admitted that the polar version also contains some difficulties, though
they are not as bad as in the rectangular version. ♦

Example 9.7
Let V(x, y, z) = (x, y, z) be the vector field of location, and let Ω be any spatial domain. Then

div V = 1 + 1 + 1 = 3,

is the flux of V through ∂Ω according to Gauß’s theorem

Φ =
∫

∂Ω

V · n dS =
∫

Ω

div V dΩ = 3vol(Ω).

As an unexpected result we see that we can express vol(Ω) as a surface integral

vol(Ω) =
1
3

∫
∂Ω

x · n dS.

Since div(x1, . . . , xn) = n only depends on the dimension, we get a similar area formula expressed by
a line integral

areal(E) =
1
2

∫
∂E

x · n ds. ♦

Example 9.8 Let V(x, y, z) = (α1, α2, α3) = α be a constant vector field, and let Ω be any spatial
domain. Then the flux through ∂Ω is given by∫

∂Ω

α · n dS = 0,

which either can be proved by Gauß’s theorem,∫
∂Ω

α · n dS =
∫

Ω

div α dΩ =
∫

Ω

0 dΩ = 0,

or by common sense, because if the vector field is constant then there must flow just as much into the
domain as is flowing out again in time.

Note, however, the difference in the proofs. The latter argument is intuitive, while Gauß’s theorem
gives the correct proof. However, it is always nice to get one’s intuition confirmed. ♦
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Example 9.9
The following example gives an important result.

0

0.5

1

1.5

2

2.5

3

–2

–1

1

2

–1

1

Figure 76: An example of a domain Ω where there is an obvious splitting of the surface ∂Ω into two
sub-surfaces F1 and F2.

Let F1 and F2 be two surfaces which together surrounds a spatial domain Ω. Let n be the outer
vector field of unit normal vectors. Finally, let V(x, y, z) be a vector field of class C1 in an open set
which contains Ω.

According to Gauß’s theorem the flux through ∂Ω is given by∫
∂Ω

V · n dS =
∫
F1

V · n dS0
∫
F2

V · n dS =
∫

Ω

div V dΩ.

We get by a rearrangement∫
F2

V · n dS =
∫

Ω

div V dΩ −
∫
F1

V · n dS

=
∫

Ω

div V dΩ +
∫
F1

V · (−n) dS.(16)

Hence, what flows out of Ω by the vector field V through the surface F2 is equal to what flows into
Ω by V through F1 plus what V creates in the domain Ω.

Since what is created by V in Ω, i.e.
∫
Ω

div V dΩ, often is easy to calculate, we have got a method
for calculation of the flux through a complicated surface F2 by using formula (16).

In the case where V is divergence free, div V = 0, formula (16) becomes particularly simple,∫
F2

V · n dS =
∫
F1

V · (−n) dS.

Since n on F2 and −n on F1 point in the “same direction”, this shows that the surface of integration
F2 can be deformed freely, when div V = 0, if only the boundary curve δF2 with its direction of
revolution is kept fixed. ♦
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Example 9.10
The Coulomb vector field (cf. Example 9.6),

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
, for (x, y, z) �= (0, 0, 0),

satisfies (where one absolutely should not put everything in the same fraction with the same denom-
inator, unless one wants to obscure everything)

∂Vx

∂x
=

∂

∂x

{
x

(x2 + y2 + z2)3/2

}
=

1

(x2 + y2 + z2)3/2
− 3x2

(x2 + y2 + z2)5/2
,

∂Vy

∂y
=

∂

∂y

{
y

(x2 + y2 + z2)3/2

}
=

1

(x2 + y2 + z2)3/2
− 3y2

(x2 + y2 + z2)5/2
,

∂Vz

∂z
=

∂

∂z

{
z

(x2 + y2 + z2)3/2

}
=

1

(x2 + y2 + z2)3/2
− 3z2

(x2 + y2 + z2)5/2
,

from which we get by adding these expressions,

div V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
=

3

(x2 + y2 + z2)3/2
− 3
(
x2 + y2 + z2

)
(x2 + y2 + z2)5/2

= 0,

i.e. V is divergence free so we can use Example 9.9 for domains Ω, which do not contain the point
(0, 0, 0).
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A. Let Ω be any spatial domain with (0, 0, 0) as an inner point. Find the flux of the Coulomb field
through ∂Ω, i.e. find

∫
∂Ω

V · n dS.

D. Since div V is not defined in (0, 0, 0), we cannot apply Gauß’s theorem directly. But since (0, 0, 0)
is an inner point, there exists a ball

K = K(0; r) ⊂ Ω,

totally contained in Ω. If we cut K out of Ω, we get a domain Ω̃ = Ω\K, in which div V is defined
everywhere and equal to 0. According to Example 9.9 the surface ∂Ω can be deformed into ∂K,
and then the flux through ∂K can be calculated as an ordinary surface integral. (The singular
point (0, 0, 0) lies in K, so we cannot apply Gauß’s theorem in the latter calculation).

I. We are just missing one thing. Since both ∂Ω and ∂K are closed surfaces, neither of them has a
boundary curve, so we get formally

δ(∂Ω) = ∅ = δ(∂K).

Alternatively there is flowing just as much into Ω̃ through ∂K as out of Ω̃ through ∂Ω, because
the flow is balanced.

Thus we have proved by using Gauß’s theorem that∫
∂Ω

V · n dS =
∫

∂K

V · n dS.

The right hand side is calculated as a usual surface integral, where it this time is worthwhile to
keep the abstract formulation as long as possible.

1) On ∂K we have r2 = x2 + y2 + z2, i.e. r =
(
x2 + y2 + z2

)1/2, and

n(x, y, z) =
1
r

(x, y, z).

2) The vector field is now rewritten in the following way

V(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
=

1
r3

(x, y, z) =
1
r2

· 1
r

(x, y, z) =
1
r2

n,

where we have used 1).
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3) Since n · n = ‖n‖2 = 1, we get by an insertion of 2) that the flux is given by∫
∂Ω

V · n dS =
∫

∂K

V · n dS =
∫

∂K

1
r2

n · n dS

=
1
r2

∫
∂K

dS =
1
r2

area(∂K) =
1
r2

· 4πr2 = 4π,

because the area of a sphere of radius r is given by 4πr2.

The result can be applied in an improved version of the horrible Example 9.6. Let Ω = K(0; r),
where r >

√
3 a, and let T be the cube of centre 0 and edge length 2a. Then the flux through ∂T

is equal to the flux through the sphere ∂Ω, i.e. according to the above,∫
∂T

V · n dS =
∫

∂Ω

V · n dS = 4π.

On the other hand, ∂T is disintegrated in a natural way into six squares of the same congruent form:
They appear from each other by a convenient revolution around one of the axis. The Coulomb
field is due to its symmetry invariant (apart from a change of letters) by these revolutions, so the
flux is the same through every one of the six squares. If we choose one of these. e.g.

F = {(x, y, z) | −a ≤ x ≤ a, −a ≤ y ≤ a, z = a} = [−a, a] × [−a, a] × {a},

then

4π =
∫

∂T

V · n dS = 6
∫
∩F

V · n dS,

from which∫
F

V · n dS =
1
6
· 4π =

2π
3

.

Obviously this method er far easier in its calculations than the method applied in Example 9.6. ♦

Example 9.11 Assume that Ω e.g. represents a subsoil water reservoir, which is polluted by some
fluid or gas of density � = �(x, y, z, t) and velocity vector v = v(x, y, z, t).

Figure 77: In most calculus courses Ω is typically a ball.
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The mass of the polluting agent in Ω at time t is given by

M = M(t) =
∫

Ω

�(x, y, z, t) dΩ =
∫

Ω

� dΩ.

The change of mass in time is then obviously equal to

(17)
dM

dt
=

d

dt

∫
Ω

�(x, y, z, t) dΩ =
∫

Ω

∂�

∂t
dΩ.

This change must be equal to the flow of mass into Ω by the vector field

�v = �(x, y, z, t)v(x, y, z, t).

Since −n points into Ω, this amount is according to Gauß’s theorem equal to

−q = −
∫

∂Ω

�v · n dS = −
∫

Ω

div(�v) dΩ.

When this expression is equated to (17), we get after a rearrangement that

0 = q +
dM

dt
=
∫

Ω

div(�v) dΩ +
∫

Ω

∂�

∂t
dΩ =

∫
Ω

{
div(�v) +

∂�

∂t

}
dΩ.

This is true for every domain Ω. Assuming that the integrand is continuous (what is always is in
practical applications), it must be 0 everywhere. In fact, if the integrand e.g was positive in a point,
then it had due to the continuity also to be positive in an open domain Ω1, and then the integral over
Ω1 becomes positive too, contradicting the assumption.
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Thus we have derived the continuity equation

div(�v) +
∂�

∂t
= 0,

which the density and the velocity vector field of the pollution vector field must satisfy.

Remark 9.5 Here the divergence is referring to the spatial variables and not to the time variable t.
thus the continuity equation is written in all details in the following way

∂

∂x
(� vx) +

∂

∂y
(� vy) +

∂

∂z
(� vz) +

∂�

∂t
= 0.

Furthermore it should be noted that there is a big difference here between the application of
d

dt
and

∂

∂t
. ♦

9.3 Rotation of a vector field; Stokes’s theorem

Example 9.12

A. Find the circulation C of the vector field

V(x, y, z) =
(
z2x, x2y, y2z

)
, (x, y, z) ∈ R

3,

along the curve K on the figure which is composed of three circle arcs of centre 0 and radius a,
and which lie in the planes z = 0, y = −x and x = y

√
3, respectively.

0.5

1

0.2

0.4

0.6

0.8

1

–0.6
–0.4

–0.2

0.2
0.4

0.6
0.8

Figure 78: The curve K for a = 1.
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Figure 79: The projection onto the (x, y)-plane for a = 1.
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D. A circulation along a closed curve can either be calculated by using its definition as an ordinary
line integral, or it can be transformed by means of Stokes’s theorem to a surface integral. Most
students are at their first encounter with this problem inclined to preferring the line integral,
because it should now be better known, even when applications of Stokes’s theorem very often give
much simpler calculations. For that reason we shall here demonstrate both variants.

I 1. The circulation as a line integral.

Let us first give the parametric representations of the three arcs, which K can be composed into
in a natural way:

K1 : (x, y, z) = a (cos ϕ, sin ϕ, 0), ϕ ∈
[
π

6
,
3π
4

]
,

K2 : (x, y, z) = a

(
− 1√

2
cos θ,

1√
2

cos θ, sin θ

)
, θ ∈

[
0,

π

2

]
,

K3 : (x, y, z) = a

(√
3

2
sin θ,

1
2

sin θ, cos θ

)
, θ ∈

[
0,

π

2

]
.

Check here that all three curves are circular arcs of radius a and centre 0. Then check that the

initial and the end points are the right ones, i.e. that the direction of the run through is correct.
(Here this is left to the reader).

In order to avoid too many complications in the calculations we rewrite the integrand in the
following way,

V · dx = z2x dx + x2y dy + y2z dz

=
1
2
{
z2 d
(
x2
)

+ x2 d
(
y2
)

+ y2 d
(
z2
)}

.

By insertion we get the following confusing picture of formulæ, where there are lots of possibilities
of making errors,

C =
1
2

∫
K1

+
1
2

∫
K2

+
1
2

∫
K3

(
z2 d
(
x2
)

+ x2 d
(
y2
)

+ y2 d
(
z2
))

=
1
2

∫ 3π
4

π
6

{
0 · d(x2)

dϕ
+ a2 cos2 ϕ · 2a2 sin ϕ · cos ϕ + y2 · 0

}
dϕ

+
1
2

∫ π
2

0

{
a2 sin2 θ · a2

2
(−2 cos θ sin θ) +

a2

2
cos2 θ · a2

2
(−2 cos θ sin θ)

+
a2

2
cos2 θ · a2 · 2 sin θ cos θ

}
dθ

+
1
2

∫ π
2

0

{
a2 cos2 θ · 3a2

4
· 2 cos θ sin θ +

3a2

4
sin2 θ · a2

4
· 2 cos θ sin θ

+
a2

4
sin2 θ · a2(−2 sin θ cos θ)

}
dθ

= a4

∫ 3π
4

π
6

cos3 ϕ sinϕdϕ +
a4

2

∫ π
2

0

(
− sin3 θ cos θ − 1

2
cos3 θ sin θ + cos3 θ sin θ

)
dθ

+
a4

2

∫ π
2

0

{
3
2

cos3 θ sin θ +
3
8

sin3 θ cos θ − 1
2

sin3 θ cos θ

}
dθ,
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i.e.

C = a4

[
−1

4
cos4 ϕ

] 3π
4

π
6

+
a4

2

∫ π
2

0

{(
−1 +

3
8
− 1

2

)
sin3 θ cos θ

+
(
−1

2
+ 1 +

3
2

)
cos3 θ sin θ

}
dθ

=
a4

4

⎧⎨
⎩
(√

3
2

)4

−
(
− 1√

2

)4
⎫⎬
⎭+

a4

2

∫ π
2

0

{
−9

8
sin3 θ cos θ + 2 cos3 θ sin θ

}
dθ

=
a4

4

(
9
16

− 1
4

)
+

a4

2

[
−9

8
· 1
4

sin4 θ − 2 · 1
4

cos4 θ

]π
2

0

=
5a4

64
+

a4

2

(
− 9

32
− 0 + 0 +

1
2

)
=

a4

64
(5 − 9 + 16) =

12a4

64
=

3a4

16
.

The calculations can be carried through, though they are far from simple.
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I 2. Circulation by means of Stokes’s theorem.

We shall now demonstrate that the calculations by an application of Stokes’s theorem in this case is
far simpler. First not that since all sub-curves are circular arcs of radius a and centre 0, they all lie
on the sphere of radius a and centre 0. They bound a part F of the sphere, where the orientation
of K forces the normal vector n on F to point away from 0 (the right hand convention), i.e.

n =
1
a

(x, y, z), where a =
√

x2 + y2 + z2.

Furthermore,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

z2x x2y y2z

∣∣∣∣∣∣∣∣∣∣∣
= (2yz, 2zx, 2xy).
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Figure 80: The surface F for a = 1 with a single normal vector n.

It is on the sphere most natural to use spherical coordinates. Then by Stokes’s theorem and a
reduction,

C =
∫
K

V · dx =
∫
F

n · rot V dS

=
∫
F

1
a

(x, y, z) · (2yz, 2zx, 2xy) dS =
6
a

∫
F

xyz dS

=
6
a

∫ 3π
4

π
6

{∫ π
2

0

a sin θ cos ϕ · a sin θ sin ϕ · a cos θ a2 sin θ dθ

}
dϕ

= 6a4

∫ 3π
4

π
6

cos ϕ · sin ϕdϕ ·
∫ π

2

0

sin3 θ cos θ dθ

= 6a4

[
1
2

sin2 ϕ

] 3π
4

π
6

·
[
1
4

sin4 θ

]π
2

0

= 6a4 · 1
2

{
1
2
− 1

4

}
· 1
4

=
6a4

32
=

3a4

16
,

i.e. far easier calculations than by the line integral. ♦
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Example 9.13

A. An oriented curve K is given as the intersection curve between

• the cylindric surface x2 + y2 = ax,

and

• half of the parabolic cylindric surface

z =
√

4a2 − ax.

The direction of the run through of K obeys the right hand convention with the positive z-axis.
Find the cirkulation along K of the vector field

V(x, y, z) = (3xy, 2x2,−yz), (x, y, z) ∈ R
3.

0

0.5

1

1.5

2

–0.4
–0.2

0.2
0.4

0.4
0.6

0.8
1

Figure 81: The curve K and its projection onto the (x, y)-plane.

D. We shall here demonstrate three variants:

1) The line integral (the calculations are almost worse than those of Example 9.12).

2) Stokes’s theorem by the surface

F1 : z =
√

4a2 − ax, (x, y) ∈ B,

3) Stokes’ sætning by the surface

F2 : x2 + y2 + z2 = (2a)2, (x, y) ∈ B, z > 0.
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I 1. As a general warning we shall first bring the solution calculated as a line integral.

When K is projected onto the (x, y)-plane we get the curve L of the parametric representation

(x, y, z) = (� cos ϕ, � sin ϕ, 0) = a
(
cos2 ϕ, cos ϕ sin ϕ, 0

)
, ϕ ∈

[
−π

2
,
π

2

]
.

Now z =
√

4a2 − ax, so K has the parametric representation

K : r(ϕ) = (x, y, z) = a
(
cos2 ϕ, cos ϕ sin ϕ,

√
4 − cos2 ϕ

)
, ϕ ∈

[
−π

2
,
π

2

]
.

Then we get the values of the vector field along the curve K,

V(x, y, z) =
(
3xy, 2x2,−yz

)
=
(
3a cos2 ϕ · a cos ϕ sin ϕ, 2a2 cos4 ϕ,−a cos ϕ sinϕ · a

√
4 − cos2 ϕ

)
= a2

(
3 cos3 ϕ sinϕ, 2 cos4 ϕ,− cos ϕ · sin ϕ ·

√
4 − cos2 ϕ

)
.
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–0.4

–0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1

Figure 82: The parametric domain B is the disc in the (x, y)-plane of centre
(a

2
, 0
)

and radius
a

2
.

Here we have chosen a = 1.

Hence,

r′(ϕ) = a

(
−2 sin ϕ · cos ϕ, cos2 ϕ − sin2 ϕ,

cos ϕ · sinϕ√
4 − cos2 ϕ

)
.

In order to avoid too big calculations we first calculate the integrand separately,

V · r′(ϕ)
= a3

(
3 cos3 ϕ sinϕ · (−2 sin ϕ cos ϕ) + 2 cos4 ϕ · (cos2 ϕ − sin2 ϕ

)− cos2 ϕ sin2 ϕ
)

= a3

(
3 cos2 ϕ cos ϕ sin ϕ · (− sin 2ϕ) + 2(cos2 ϕ)2 · cos 2ϕ − 1

4
(2 cos ϕ sinϕ)2

)

= a3

{
3

1+cos 2ϕ

2
sin 2ϕ

2
· (− sin 2ϕ) + 2

(
1+cos 2ϕ

2

)2

cos 2ϕ − 1
4

sin2 2ϕ

}

=
a3

4
{−3(1 + cos 2ϕ) sin2 2ϕ + 2(1 + cos 2ϕ)2 cos 2ϕ − sin2 2ϕ

}
=

a3

4
{−3 sin2 2ϕ − 3 cos 2ϕ sin2 2ϕ + 2(1 + 2 cos 2ϕ + cos2 2ϕ) cos 2ϕ − sin2 2ϕ

}
=

a3

4
{−4 sin2 2ϕ − 3 cos 2ϕ sin2 2ϕ + 2 cos 2ϕ + 4 cos2 2ϕ + 2 cos2 2ϕ · cos 2ϕ

}
=

a3

4
{
4
(
cos2 2ϕ − sin2 2ϕ

)− 5 cos 2ϕ sin2 2ϕ + 2 cos 2ϕ
(
sin2 2ϕ + cos2 2ϕ

)
+ 2 cos 2ϕ

}
,

i.e.

V · r′(ϕ) =
a3

4
{
4 cos 4ϕ − 5 cos 2ϕ sin2 2ϕ + 4 cos 2ϕ

}
,

which is a fairly tough calculation. At the same time we see why we do not immediately insert the
expression into the integral.
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However, after this tough reduction the circulation becomes easy to calculate,

C =
∮
K

V · t ds =
∫ π

2

−π
2

V · r′(ϕ) dϕ

=
a3

4

∫ π
2

−π
2

{
4 cos 4ϕ − 5 cos 2ϕ sin2 2ϕ + 4 cos 2ϕ

}
dϕ

=
a3

4

{
[sin 4ϕ]

π
2
−π

2
− 5
[
1
2
· 1
3

sin3 2ϕ
]π

2

−π
2

+ [2 sin 2ϕ]
π
2
−π

2

}

= 0,

and we see that after so much trouble we only get zero as our result.

I. As an introduction to the applications of Stokes’s theorem we first calculate

rot V =

∣∣∣∣∣∣∣
ex ey ez

∂

∂x

∂

∂y

∂

∂z
3xy 2x2 −yz

∣∣∣∣∣∣∣ = (−z, 0, 4x − 3x) = (−z, 0, x),

which looks promising, because rot V is much simpler than V.

Then we shall choose a surface which has K as its boundary curve. This surface is of course not
unique.

I 2. The most obvious possibility is to choose the parabolic cylindric surface

F1 : z =
√

4a2 − ax, (x, y) ∈ B,

where the parametric domain B is best described in polar coordinates,

B =
{

(�, ϕ)
∣∣∣ ϕ ∈

[
−π

2
,
π

2

]
, 0 ≤ � ≤ a cos ϕ

}
,

while (x, y, z) still denotes the rectangular coordinates.

Because F1 is given as a graph, the parametric representation is

r(x, y) = (x, y, z) =
(
x, y,
√

4a2 − ax
)

, (x, y) ∈ B,

from which we get the tangential vector fields

r′x =
(

1, 0,
1
2

−a√
4a2 − ax

)
=
(
1, 0,− a

2z

)
, og r′y = (0, 1, 0),

and the corresponding normal vector field

N(x, y) = r′x × r′y =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 − a

2z

0 1 0

∣∣∣∣∣∣∣∣∣∣∣
=
( a

2z
, 0, 1
)

.

We see that N(x, y) and the orientation of K satisfy the right hand convention N · ez = 1, so we
have the correct orientation.
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An application of Stokes’s theorem now gives

C =
∮
K

V · t ds =
∫
F1

n · rot V dS =
∫

B

( a

2z
, 0, 1
)
· (−z, 0, x) dx dy

=
∫

B

(
−1

2
a + x

)
dx dy = −a

2
area(B) +

∫
B

x dx dy

= −a

2
· π
(a

2

)2
+
∫ π

−π
2

2
{∫ a cos ϕ

0

� cos ϕ · � d�

}
dϕ

= −πa3

8
+
∫ π

2

−π
2

cos ϕ ·
[
1
3

�3

]a cos ϕ

0

dϕ = −πa3

8
+

a3

3

∫ π
2

−π
2

cos4 ϕdϕ

= −πa3

8
+

2a3

3

∫ π
2

0

(
1 + cos 2ϕ

2

)2

dϕ

= −πa3

8
+

2a3

3
· 1
4

∫ π
2

0

(
1 + 2 cos 2ϕ + cos2 2ϕ

)
dϕ

= −πa3

8
+

a3

6

{π

2
+ 0 +

π

4

}
= 0.
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I 3. The calculations of I 2. were much simpler than the calculations of I 1., although they still gave
some trigonometric problems. The question is now, if it is possible to choose another surface F
with K as its boundary curve, such that the calculations become even more easy. We shall now
show that this is possible, though far from obvious.

First we note that since K satisfies the two conditions

a) x2 + y2 = ax and b) z2 = 4a2 − ax,

the parametric representation of F must also satisfy(
x2 + y2

)
+ z2 = ax +

(
4a2 − ax

)
= 4a2 = (2a)2, z > 0,

i.e. K lies on the half sphere of centre 0 and radius 2a and z > 0. We choose F2 as that part of
this half sphere which lies above the parametric domain B:

F2 : x2 + y2 + z2 = (2a)2, (x, y) ∈ B, z ≥ 0.

The sphere of centre 0 and radius 2a has the unit normal vector

n =
1
2a

(x, y, z),

hence we have on F2

n · rot V =
1
2a

(x, y, z) · (−z, 0, x) = 0.

By an application of Stokes’s theorem the calculation of the circulation is now reduced to a triviality,

C =
∮
K

V · t ds =
∫
F2

n · rot V dS =
∫
F2

0 dS = 0,

in which we shall not even insert a parametric representation followed by some reduction theorem!
♦

9.4 Potentials

Example 9.14

A. Given the divergence free vector field

V(x, y, z) =
(
3y2z2, xy,−xz

)
, (x, y, z) ∈ R

3.

Since R
3 is star-shaped, V has vector potentials W. Find one of these, i.e. find W, such that

V = �× W = rot W.

D. The usual solution formula of textbooks looks here very harmless, but from my experience of
teaching I can say that i is not that harmless. Therefore we shall give a thorough treatment of this
example.

The method can briefly be described in the following way:
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1) Have this exercise been solved earlier in the text?
2) If ‘no’, examine if V(x, y, z) is divergence free.
3) Calculate separately the auxiliary field T(x) = V(x) × x.
4) Replace x by τ x. (This is the critical phase of the method).

5) Calculate W0(x) =
∫ 1

0
T(τ x) dτ .

6) Check once more the preassumptions of the method.
7) Check the result.

I. 1) We first check if we earlier have solve the problem.

It happens quite often at an examination that one in the first part of a problem as a check are
asked to calculate the rotation of e.g. the vector field

W1(x, y, z) =
(

xyz,−1
2

y2z3,
1
2

y3z2

)
.

This is of course given by

�× W1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xyz −1
2

y2z3 1
2

y3z2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(

3
2

y2z2 +
3
2

y2z2, xy − 0, 0 − xz

)
=
(
3y2z2, xy,−xz

)
= V.

Half an hour later one comes to another question in which one is asked to find a vector potential
for V. Some students may immediately see that W1 is a solution. Other poor souls have to
go through the following steps:

2) Examine if V(x, y, z) is divergence free.
If not, there is no vector potential, and the problem is solved.

In the example under consideration we get

div V = 0 + x − x = 0,

so we must carry on to the next point.
3) Calculate the auxiliary field T(x) = V(x) = ×x.

Be very careful with the order of the factors. And do not yet introduce the parameter τ in the
calculations. It will only confuse the overview.

In the case under consideration we get

T (x) = V(x) × x =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

3y2z2 xy −xz

x y z

∣∣∣∣∣∣∣∣∣∣
=
(
xyz − (−xyz),−x2z3y2z3, 3y3z2 − x2y

)
=
(
2xyz,−x2z − 3y2z3, 3y3z2 − x2y

)
.
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4) Replace x by τ x, y by τ y and z by τ z.
This is the critical step where most errors are made. Be extremely scrupulous here. It may be
useful to note that one in polynomials just add the factor τn to every term which contains n
factors of the type x, y or z (they are considered as equal at this count).

In the case under consideration where T(x) is composed of polynomials we get

T(τ x) =
(
2τ3xyz,−τ3x2z − 3τ5y2z3, 3τ5y3z2 − t4x2y

)
,

because xyz, x2z and x2y contain three factors, i.e. we shall multiply by τ 3, while y2z3 and
y3z2 contain five factors, so here we add the factor τ 5.

5) Calculate the candidate

W0(x) =
∫ 1

0

T(τ x) dτ

by a coordinate-wise integration after τ .
We have in the case under consideration

W0(x) =
∫ 1

0

T(τ x) dτ

=
(

xyz

∫ 1

0

2τ3dτ, −x2z

∫ 1

0

τ3dτ − y2z3

∫ 1

0

3τ5dτ, y3z2

∫ 1

0

3τ5dτ − x2y

∫ 1

0

τ3dτ

)

=
(

1
2

xyz,−1
4

x2z − 1
2

y2z3,
1
2

y3z2 − 1
4

x2y

)
.
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The expressions are often so huge that it pays to calculate each coordinate separately. We see
that even in this simple case the equations are enormous.

6) If our calculations have been correct – notice that 0 must lie in the domain – then W0(x) is a
vector potential for V(x) in every sub-domain of Ω, which can be reached by a radial line in Ω
from 0.

In the case under consideration we see that R
3 satisfies this criterium, hence

W0(x) =
(

1
2

xyz, −1
4

x2z − 1
2

y2z3,
1
2

y3z2 − 1
4

x2y

)

is a vector potential in the whole of R
3 (if our calculations were without errors, of course).

7) By a comparison we see that we have obtained two different solutions, W0(x) in the latter
case and W1(x) in the former one. They are both correct, because their difference is only a
gradient field. Nevertheless this phenomenon often causes some panic after the examination,
because students are used to from high school that the solution is unique. It is not in problems
of this type!

Since the method is so difficult it is highly recommended that one always check every calculation
in exercises of this type. In the present case we get

�× W0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

1
2

xyz −1
4

x2z − 1
2

y2z3 1
2

y3z2 − 1
4

x2y

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(

3
2

y2z2− 1
4

x2−
{
−1

4
x2− 3

2
y2z2

}
,
1
2

xy−
{

0− 1
2

xy

}
,−1

2
xz− 1

2
xz

)

=
(
3y2z2, xy,−xz

)
= V(x, y, z).

We have now checked that W0 is a vector potential.

Remark 9.6 If a check does not give the right answer and div V = 0, then we have made an
error at some place, probably at 4) which would be the first place where I would search myself.
This does not leave out the possibility of errors in the other steps as well. ♦
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A Formulæ

Some of the following formulæ can be assumed to be known from high school. Others are introduced
in Calculus 1. It is highly recommended that one learns most of these formulæ in this appendix by
heart.

A.1 Squares etc.

The following simple formulæ occurs very frequently in the most different situations.

(a + b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a + b)2,
(a − b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a − b)2,
(a + b)(a − b) = a2 − b2, a2 − b2 = (a + b)(a − b),
(a + b)2 = (a − b)2 + 4ab, (a − b)2 = (a + b)2 − 4ab.

A.2 Powers etc.

Logarithm:

ln |xy| = ln |x| + ln |y|, x, y �= 0,

ln
∣∣∣∣xy
∣∣∣∣ = ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(
x

y

)r

=
xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1
ax

, a > 0, (extensions for some x),

n
√

a = a1/n, a ≥ 0, n ∈ N.

Square root:
√

x2 = |x|, x ∈ R.

Remark A.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦
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A.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x) ± g(x)}′ = f ′(x) ± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)
{

f ′(x)
f(x)

+
g′(x)
g(x)

}
,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{
f(x)
g(x)

}′
=

f ′(x)g(x) − f(x)g′(x)
g(x)2

.

It is often more convenient to compute this expression in the following way:{
f(x)
g(x)

}
=

d

dx

{
f(x) · 1

g(x)

}
=

f ′(x)
g(x)

− f(x)g′(x)
g(x)2

=
f(x)
g(x)

{
f ′(x)
f(x)

− g′(x)
g(x)

}
,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

A  Formulæ
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{f(x)g(x)}′
f(x)g(x)

=
f ′(x)
f(x)

+
g′(x)
g(x)

,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)
f(x)

− g′(x)
g(x)

.

Since

d

dx
ln |f(x)| =

f ′(x)
f(x)

, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

A.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| =

1
x

, for x �= 0.

Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R og a > 0.

Trigonometric:

d

dx
sinx = cos x, for x ∈ R,

d

dx
cos x = − sin x, for x ∈ R,

d

dx
tanx = 1 + tan2 x =

1
cos2 x

, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cot x = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1 − tanh2 x =

1
cosh2 x

, for x ∈ R,

d

dx
coth x = 1 − coth2 x = − 1

sinh2 x
, for x �= 0.
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Inverse trigonometric:

d

dx
Arcsin x =

1√
1 − x2

, for x ∈ ] − 1, 1 [,

d

dx
Arccos x = − 1√

1 − x2
, for x ∈ ] − 1, 1 [,

d

dx
Arctan x =

1
1 + x2

, for x ∈ R,

d

dx
Arccot x =

1
1 + x2

, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1
1 − x2

, for |x| < 1,

d

dx
Arcoth x =

1
1 − x2

, for |x| > 1.

Remark A.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦

A.5 Integration

The most obvious rules are about linearity∫
{f(x) + λg(x)} dx =

∫
f(x) dx + λ

∫
g(x) dx, where λ ∈ R is a constant,

and about that differentiation and integration are “inverses to each other”, i.e. modulo some arbitrary
constant c ∈ R, which often tacitly is missing,∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =
∫
{f(x)g(x)}′ dx =

∫
f ′(x)g(x) dx +

∫
f(x)g′(x) dx.

Hence, by a rearrangement
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The rule of partial integration:∫
f ′(x)g(x) dx = f(x)g(x) −

∫
f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark A.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark A.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. See also Chapter 4. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):∫
f(ϕ(x)) · ϕ′(x) dx = “

∫
f(ϕ(x)) dϕ(x)′′ =

∫
y=ϕ(x)

f(y) dy.
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Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then∫
f(x) dx =

∫
y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark A.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√

x, hence x = ϕ(y) = y2 og ϕ′(y) = 2y. ♦

A.6 Special antiderivatives

Power like:∫
1
x

dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫
xα dx =

1
α + 1

xα+1, for α �= −1,

∫
1

1 + x2
dx = Arctan x, for x ∈ R,

∫
1

1 − x2
dx =

1
2

ln
∣∣∣∣1 + x

1 − x

∣∣∣∣ , for x �= ±1,

∫
1

1 − x2
dx = Artanh x, for |x| < 1,

∫
1

1 − x2
dx = Arcoth x, for |x| > 1,

∫
1√

1 − x2
dx = Arcsin x, for |x| < 1,

∫
1√

1 − x2
dx = − Arccos x, for |x| < 1,

∫
1√

x2 + 1
dx = Arsinh x, for x ∈ R,

∫
1√

x2 + 1
dx = ln(x +

√
x2 + 1), for x ∈ R,

∫
x√

x2 − 1
dx =

√
x2 − 1, for x ∈ R,

∫
1√

x2 − 1
dx = Arcosh x, for x > 1,

∫
1√

x2 − 1
dx = ln |x +

√
x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x +

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.
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Exponential like:∫
expx dx = expx, for x ∈ R,

∫
ax dx =

1
ln a

· ax, for x ∈ R, og a > 0, a �= 1.

Trigonometric:∫
sin x dx = − cos x, for x ∈ R,

∫
cos x dx = sinx, for x ∈ R,

∫
tan x dx = − ln | cos x|, for x �= π

2
+ pπ, p ∈ Z,

∫
cot x dx = ln | sin x|, for x �= pπ, p ∈ Z,

∫
1

cos x
dx =

1
2

ln
(

1 + sinx

1 − sin x

)
, for x �= π

2
+ pπ, p ∈ Z,

∫
1

sinx
dx =

1
2

ln
(

1 − cos x

1 + cos x

)
, for x �= pπ, p ∈ Z,

∫
1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫
1

sin2 x
dx = − cot x, for x �= pπ, p ∈ Z.

Hyperbolic:∫
sinhx dx = coshx, for x ∈ R,

∫
cosh x dx = sinhx, for x ∈ R,

∫
tanhx dx = ln coshx, for x ∈ R,

∫
coth x dx = ln | sinh x|, for x �= 0,

∫
1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫
1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫
1

sinhx
dx =

1
2

ln
(

cosh x − 1
cosh x + 1

)
, for x �= 0,
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∫
1

sinhx
dx = ln

∣∣∣∣ex − 1
ex + 1

∣∣∣∣ , for x �= 0,

∫
1

cosh2 x
dx = tanhx, for x ∈ R,

∫
1

sinh2 x
dx = − coth x, for x �= 0.

A.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cos u, sin u) are
the coordinates of a piont P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

��
��

�

�

��
(cos u, sin u)

u
1

Figure 83: The unit circle and the trigonometric functions.
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The fundamental trigonometric relation:

cos2 u + sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cos u, sin u) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu + i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− i u) it is easily seen that

cos u =
1
2
(exp(iu) + exp(− i u)),

sinu =
1
2i

(exp(iu) − exp(− i u)),

Moivre’s formula: By expressing exp(inu) in two different ways we get:

exp(inu) = cos nu + i sinnu = (cos u + i sinu)n.

Example A.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical appliction,

cos(3u) + i sin(3u) = (cos u + i sinu)3

= cos3 u + 3i cos2 u · sin u + 3i2 cos u · sin2 u + i3 sin3 u

= {cos3 u − 3 cos u · sin2 u} + i{3 cos2 u · sin u − sin3 u}
= {4 cos3 u − 3 cos u} + i{3 sin u − 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u − 3 cos u, sin 3u = 3 sinu − 4 sin3 u. ♦
Addition formulæ:

sin(u + v) = sinu cos v + cos u sin v,

sin(u − v) = sinu cos v − cos u sin v,

cos(u + v) = cosu cos v − sinu sin v,

cos(u − v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1
2

sin(u + v) +
1
2

sin(u − v),

cos u sin v =
1
2

sin(u + v) − 1
2

sin(u − v),

sinu sin v =
1
2

cos(u − v) − 1
2

cos(u + v),

cos u cos v =
1
2

cos(u − v) +
1
2

cos(u + v).
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Sums of trigonometric functions to a product:

sinu + sin v = 2 sin
(

u + v

2

)
cos
(

u − v

2

)
,

sinu − sin v = 2 cos
(

u + v

2

)
sin
(

u − v

2

)
,

cos u + cos v = 2 cos
(

u + v

2

)
cos
(

u − v

2

)
,

cos u − cos v = −2 sin
(

u + v

2

)
sin
(

u − v

2

)
.

Formulæ of halving and doubling the angle:

sin 2u = 2 sin u cos u,

cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u,

sin
u

2
= ±
√

1 − cos u

2
followed by a discussion of the sign,

cos
u

2
= ±
√

1 + cos u

2
followed by a discussion of the sign,

A.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x − sinh2 x = 1.

Definitions:

coshx =
1
2

(exp(x) + exp(−x)) , sinhx =
1
2

(exp(x) − exp(−x)) .

“Moivre’s formula”:

exp(x) = cosh x + sinhx.

This is trivial and only rarely used. It has been included to show the analogy.
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Addition formulæ:

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x − y) = sinh(x) cosh(y) − cosh(x) sinh(y),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y) − sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x) − 1 = 2 sinh2(x) + 1,

sinh
(x

2

)
= ±
√

cosh(x) − 1
2

followed by a discussion of the sign,

cosh
(x

2

)
=

√
cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(
x +
√

x2 + 1
)

, x ∈ R,

Arcosh(x) = ln
(
x +
√

x2 − 1
)

, x ≥ 1,
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( )

Artanh(x) =
1
2

ln
(

1 + x

1 − x

)
, |x| < 1,

Arcoth(x) =
1
2

ln
(

x + 1
x − 1

)
, |x| > 1.

A.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

A.10 Taylor expansions

The generalized binomial coefficients are defined by(
α
n

)
:=

α(α − 1) · · · (α − n + 1)
1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with(
α
0

)
:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).

Power like:

1
1 − x

=
∞∑

n=0

xn, |x| < 1,

1
1 + x

=
∞∑

n=0

(−1)nxn, |x| < 1,

(1 + x)n =
n∑

j=0

(
n
j

)
xj , n ∈ N, x ∈ R,

(1 + x)α =
∞∑

n=0

(
α
n

)
xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
, |x| < 1,

Arctan(x) =
∞∑

n=0

(−1)n x2n+1

2n + 1
, |x| < 1.
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Exponential like:

exp(x) =
∞∑

n=0

1
n!

xn, x ∈ R

exp(−x) =
∞∑

n=0

(−1)n 1
n!

xn, x ∈ R

sin(x) =
∞∑

n=0

(−1)n 1
(2n + 1)!

x2n+1, x ∈ R,

sinh(x) =
∞∑

n=0

1
(2n + 1)!

x2n+1, x ∈ R,

cos(x) =
∞∑

n=0

(−1)n 1
(2n)!

x2n, x ∈ R,

cosh(x) =
∞∑

n=0

1
(2n)!

x2n, x ∈ R.

A.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x → ∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x → ∞:

(lnx)β

xα
→ 0 for x → ∞, α, β > 0.

B) An exponential dominates a power function for x → ∞:

xα

ax
→ 0 for x → ∞, α, a > 1.

C) The faculty function dominates an exponential for n → ∞:

an

n!
→ 0, n → ∞, n ∈ N, a > 0.

D) When x → 0+ we also have that a power function dominates the logarithm:

xα lnx → 0−, for x → 0+, α > 0.
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